

OOO "Электропомпа" эксклюзивный дистрибьютор Navid Motor в России

Офис

MÖ, г. Долгопрудный, Лихачевский проезд, д.8

тел. 8 800 100 00 77

electropompa@mail.ru

Сервис

MÖ, г. Долгопрудный, Промышленный проезд, д.14

тел. +7 (495) 617-69-42

service@electropompa.ru

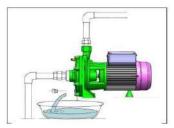
NAVID MOTOR INDUSTRIES COMPANY

PUMPIRAN GRUOP

БЫТОВЫЕ НАСОСЫ

Руководство по монтажу и эксплуатации

https://electropompa.ru



Компания Navid Motor Industries, расположенная в 35 км от Тебриза, специализируется на производстве широкого ассортимента бытовых и промышленных насосов. На площади $30~000~\text{M}^2$ предприятие с штатом более 300~сотрудников выпускает свыше 800~типов электронасосов, являясь ключевым производителем насосного оборудования на Ближнем Востоке.

Ремонт и обслуживание

При установке насоса в месте, где возможно замерзание, или при сезонной остановке слейте воду.

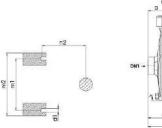
- ❖ Перед разборкой насоса убедитесь, что впускной и выпускной клапаны (задвижка) закрыты.
- ❖ Перед выполнением любых ремонтных работ отключите основное электропитание насоса.
- ❖ Ремонт насоса должны проводить обученные и квалифицированные специалисты.

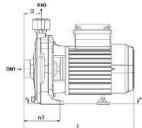
Обратите внимание на следующее:

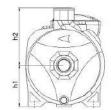
- * Электронасос будет работать бесшумно при соответствии его характеристик рабочим условиям и правильном выборе модели.
- * В системах, оборудованных манометром и расходомером, любое снижение давления или расхода, даже незначительное, может привести к увеличению количества циклов включения/ выключения, что вызывает износ компонентов насоса. Использование данного оборудования рекомендуется совместно с подходящим гидроаккумулятором минимальным объемом 0,5-1 литр.

УВАЖАЕМЫЕ КЛИЕНТЫ:

Добро пожаловать в семью Navid Motor. Наши электронасосы производятся с использованием самых современных технологий и усовершенствованных методов контроля качества.

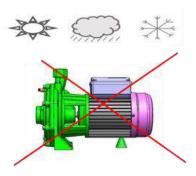

Данное руководство подготовлено, чтобы помочь вам в эксплуатации данного электронасоса, его установке и техническом обслуживании для обеспечения комфортной работы с оборудованием.


Пожалуйста, ознакомьтесь с данным руководством перед установкой и эксплуатацией.


Наши насосы имеют двухлетнюю гарантию и сопровождаются сервисным обслуживанием. Более подробную информацию о нашей продукции вы можете найти на нашем сайте.

Общие технические характеристики

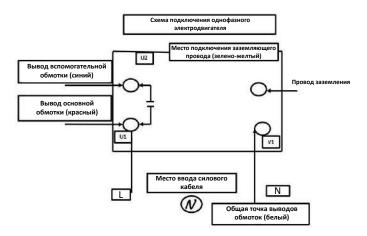
- Идеально подходят для подачи воды в офисных и административных зданиях, бассейнах и т.д.
- Компактная конструкция
- Подходит для ограниченного пространства
- Рассчитан на непрерывную работу, длительный срок службы и устойчивость к коррозии
- Высокое качество и низкое энергопотребление
- Нержавеющий вал
- Конструкция рабочего колеса, адаптированная к условиям эксплуатации и окружающей среды
- Использование тепловой защиты для предотвращения перегорания двигателя из-за высокого тока и заклинивания
- Простота монтажа и подключения
- Наличие дренажного клапана
- Надежное торцевое уплотнение для предотвращения утечки воды
- Устойчив к брызгам воды со всех направлений (степень защиты IP54)
- Наличие регулируемого и сменного основания насоса


Пуск

- Перед началом любых работ стравите воздух через специальный воздушный клапан.
- Перед запуском насоса убедитесь, что вал и рабочее колесо вращаются свободно; при наличии заклинивания устраните его до начала работ.
- Убедитесь, что направление вращения насоса правильное; при расположении насоса со стороны двигателя оно должно быть по часовой стрелке.
- Максимальное рабочее давление насосов указано в таблице ниже (сумма давления всасывания и давления в баке при закрытом выпускном клапане):

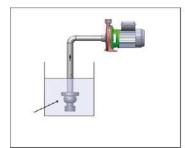
Давление (bar)	Тип насоса								
6	NM-CM100								
	NM-CAM100								
	NM-PM45								
	NM-CMT100								
	NM-CAMT100								
8	NM-PM80								
0	NM-PMT80								
	NM-CB160								
	NM-CB210								
	NM-CB310								
	NM-CBT160								
11	NM-CBT210								
11	NM-CBT310								
	NM-CBT400								
	NM-CBT600								
	NM-CBT751								
	NM-CBT900								

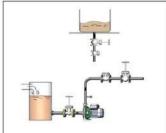
Подготовка


- Вода, используемая в бытовых насосах, должна быть чистой и не вызывать химических и механических повреждений компонентов насоса. Диапазон температур для рабочего колеса из металла составляет от +2 до +90 градусов Цельсия, а из пластика от +2 до +50.
- Данные электронасосы оснащены торцевым уплотнением и тепловой защитой.
- Место установки должно быть хорошо вентилируемым, не запыленным, с температурой воздуха от +5 до +40 °C, а также должно обеспечивать необходимое минимальное пространство для монтажа и эксплуатации.
- Не отсоединяйте корпус от электронасоса при установке, так как все изделия упаковываются после окончательного тестирования, и вероятность неисправностей исключена.
- Следите за тем, чтобы не допускать попадания воды на электродвигатель.

255 255 257 197 197 197 197 197 197 197 197 197 19	R	Hydraulic Data	MaxQ (m3/hr)	3	3	5.4	5.4	9	8	7.2	7.2	8.4	8.4	8.5	8.5	12	13.5	15	16.5
000000	16	Hydraul	Max H (m)	25	25	33	33	9	9	53	53	85	85	64	64	63.6	6.97	20.7	97.5
CB1751	14		Spead (rpm)	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900
B	ti ti		Power (HP)	1		F	-	-	- :	1.5	1.5	2	2	3	3	4	5.5	7.5	10
3	01	I Data	roltage (V)	220	380	220	380	220	380	220	380	220	380	220	380	380	380	380	380
Q(gpm) 35 35 (2010) (2010) (2010) (2010)	8 Q(m3/h)	Electrical Data	Curent(A) Vol		2	100	2		2		4.1		4.8	Н	5.2	\dashv		11.6	13.3
85 85 85 85 85 85 85 85 85 85 85 85 85 8	9		The same					2		2 2		.5	1						
B160			Curent(A) 1Phase	4.7		1 5.7		1 5.2	+	10.2	H	11.5		13.2			_		_
	-		d1 (mm) 1P	9 54	9 54	9 54	9 54		1	10 54	10 54	10 54	10 54	Н	10 54	16 54	\neg	┪	16 54
o	2		m2 (mm)	170			170	8		+	212	212	212	-	212	\dashv	+	+	265
1	3		m1 n (mm) (m	140	Н	140 1	140 1		ř	٠	170 2	Н	170 2		170 2			-	213 2
33 66 88 131 154 77 H(ft)	0		n2 n (mm) (n	184 1	Н	118 1	118 1		,	175 1		175 1	175 1		175 1			+	258 2
56	w.	uo	n1 (mm) (r	155	155	Н	-	127	127	115		144	144	Н	144 1	\dashv	-	-	145
1000		Pump Dimension) (ww)	140	140	45	-			81.2	-	81.2	81.2		81.2			-	95.5
23 NIM CMIDO	sr.	d dun	(mm)	423	423	300	300	292		387		387	387		387			_	999
90	q	Ь	h2 (mm)	99	99	136	136	121	121	111	156	156	156	156	156	170	170	170	170
0(gpm) 13	3 Q(m3/hr)		h1 (mm)	151	151	26	97	71	7	110	110	110	110	110	110	135	135	135	135
13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	a O(m		DN2 (inch)	1	1	1	-	-	,		+	-	1	1	1	1 1/4	11/4	1 1/4	1 1/4
o N	-2		DN1 (inch)	1	1	1	-			1 1/4	1 1/4	1 1/4	1114	1 1/4	1 1/4	1 1/2		11/2	11/2
MM PMS0	е	ф	Weight (Kg)	16.6	16.4	- 11	10.8	10	8.6	5.3	23.9	25.6	24.7	31	25.6	14	44.8	50.5	54
H(m) 10 20 50 50 50 50 50 50 50 50 50 50 50 50 50		Domestic Pump	Pump Type	CAM 100	CAMT100	CM100	CMT100	PM80	PMT80	CR 160	CBT 160	CB 210	CBT 210	CB 310	CBT 310	CBT 400	CBT 600	CBT 751	CBT 900
		_	4																_

Электрические присоединения


- Убедитесь, что заземляющий провод подключен.
- Обязательно используйте провода соответствующего сечения.
- Перед запуском насоса убедитесь, что напряжение и частота питающей сети соответствуют данным, указанным на насосе.
- Максимально допустимое отклонение напряжения питающей сети от указанного на насосе для однофазных двигателей составляет 5%.
- Сечение кабеля, указанное в таблице, приведено для расстояния менее 20 метров.
- Способ подключения проводов в электронасосе соответствует схеме на рисунке:

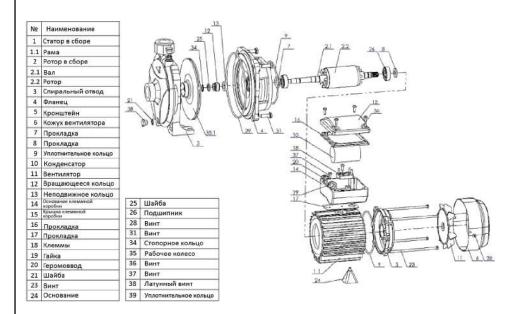


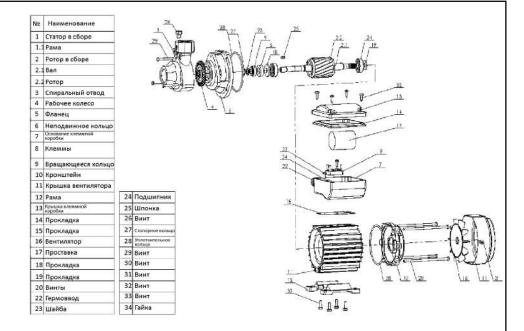
Монтаж и трубопроводы

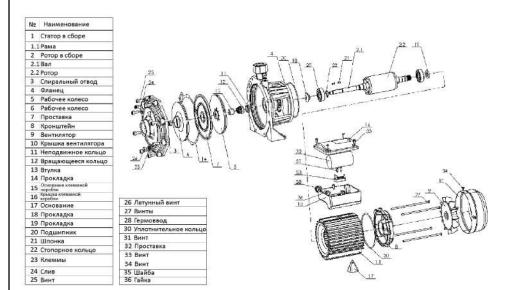
- Рекомендуется установить обратный клапан в напорном трубопроводе для защиты насоса от перепадов давления и предотвращения обратного потока воды. Для управления потоком, давлением и энергопотреблением используйте редукционный клапан. Также в напорном трубопроводе должен быть установлен манометр.
- На входе насоса используйте приемный клапан, оснащенный фильтром. Однако если насос имеет систему вентиляции (например, NM-CAM100), то вместо него на входе насоса используется обратный клапан с фильтром.
- Струйный насос NM-CAM100 обладает системой аэрации. При высоте всасывания более 5 метров всасывающая труба должна быть прямой и иметь вертикальный участок длиной не менее 1 метра.

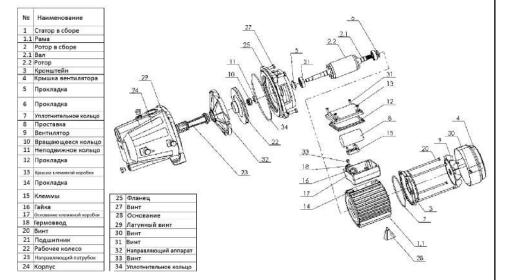
Монтаж и трубопроводы

 Присоединение трубопровода к электронасосу не должно создавать механическое напряжение и вибрацию на корпусе (рекомендуется использовать подходящий виброкомпенсатор).


- Всасывающий трубопровод насоса должен быть как можно короче, без резких изгибов, абсолютно герметичным, выдерживать создаваемое во всасывающей части разрежение и предотвращать попадание пузырьков воздуха на вход насоса.
- Срез всасывающей трубы должна находиться в воде на глубине не менее двух диаметров трубопровода.
- Диаметр трубопроводов зависит от требуемой длины и расхода, при этом скорость жидкости на входе не должна превышать 1,5 м/с, а на выходе 2,5 м/с. Кроме того, диаметр труб не должен быть меньше размера отверстия насоса.
- В случае, если уровень жидкости в резервуаре находится выше всасывающего патрубка насоса, на трубопроводе должен быть установлен запорный клапан.


Электрические присоединения


Электрические подключения должны выполняться квалифицированным специалистом в соответствии со стандартом EN 60335-2-41.


Для каждого насоса должен быть предусмотрен отдельный предохранитель соответствующего номинала (в соответствии с таблицей электрических характеристик ниже):

Тип насоса	Пит	Мо	щность	Ток	Предо- храни-	Сечение		
Тип насоса	Напряж.	Фазы	HP	kw	(A)	тель	ССЧЕНИС	
NM-PM45	230	1	1/2	0.37	2.3	4	3x1.5	
NM-PM80	230	1	1	0.75	5.2	6	3x1.5	
NM-CAM100	230	1	1	0.75	4.1	6	3x1.5	
NM-CM100	230	1	1	0.75	4.8	6	3x1.5	
NM-PMT80	400	3	1	0.75	2	4	4x1.5	
NM-CAMT100	400	3	1	0.75	2.3	4	4x1.5	
NM-CMT100	400	3	1	0.75	2	4	4x1.5	
NM-CB160	230	1	1.5	1.1	10.2	16	3x2.5	
NM-CB210	230	1	2	1.5	11.5	16	3x2.5	
NM-CB310	230	1	3	2.2	13.2	16	3x2.5	
NM-CBT160	400	3	1.5	1.1	4.1	6	4x1.5	
NM-CBT210	400	3	2	1.5	4.8	6	4x1.5	
NM-CBT310	400	3	3	2.2	5.2	6	4x1.5	
NM-CBT400	400	3	4	3	6.7	10	4x1.5	
NM-CBT600	400	3	5.5	4	9.1	16	4x1.5	
NM-CBT751	400	3	7.5	5.5	11.5	16	4x1.5	
NM-CBT900	400	3	10	7.5	13.3	25	4x1.5	

