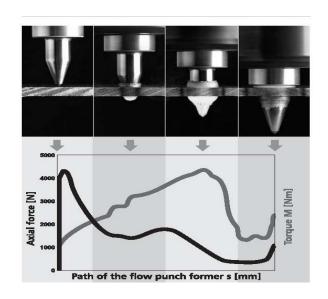
Условия осуществления процесса

Параметры процесса:

Разогрев под действием трения и давление подачи производят деформацию и перемещение материала. Нагрев происходит благодаря высокой скорости вращения, соответствующей осевой силе и скорости подачи. Это означает, что независимо от размера отверстия, используемый сверлильный станок должен иметь скорость вращения до 4000 об/мин, выходную мощность до 5 кВт и скорость подачи до 1000 мм/мин.


Правильная комбинация скорости подачи и скорости вращения зависит от марки (нержавеющая сталь, сталь или цветные металлы) и толщины стенки материала. Для достижения оптимальных результатов, материал должен поддерживать нужную температуру в процессе формовки и не остывать слишком быстро. Данные, приведенные ниже в этом документе, следует рассматривать только как ссылочные, они могут сильно меняться для различных материалов и толщин.

Осевая сила:

Как показано рис.17-1, требуемая осевая сила в начале процесса формовки трением очень велика и уменьшается к концу процесса, когда отверстие полностью сформировано. При обработке тонких материалов может понадобиться подкладка, чтобы избежать прогиба.

Крутящий момент:

Как показано на рис.17-1, увеличение вращательного момента обратно осевой силе до окончания процесса формовки отверстия. Таким образом, максимальный вращательный момент требуется на стадии преобразования втулки из конической в цилиндрическую форму. В этой точке требуется максимальное приложение силы (давления).

Рис. 17-1: Осевая сила и крутящий момент в процессе формовки трением

Скорость вращения об/мин:

Нормальная скорость (см. табл.) для маленьких диаметров отверстий относительно высока, приблизительно 3000 об/мин, и может достигать 4500 об/мин для цветных металлов. Для больших диаметров отверстия, таких как M20, требуемая скорость приблизительно 1000 об/мин. Нержавеющая сталь, теплопроводность которой меньше, может обрабатываться со скоростями до 20% меньшими.

Метрическая резьба

Диаметр резьбы	диаметр пуансона,	скорость вращения* при формировании отверстия, об/мин	Выходная мощность станка, кВт	скорость вращения* при формировании резьбы, об/мин
M3	2.7	3000	0.7	1500
M4	3.7	2600	0.8	1100
M5	4.5	2500	0.9	900
M6	5.4	2400	1.1	800
M8	7.3	2100	1.5	600
M10	9.2	1800	1.7	380
M12	10.9	1500	1.9	300
M16	14.8	1400	2.4	200
M20	18.7	1200	3.0	160

Дюймовая резьба

, , , <u>, , , , , , , , , , , , , , , , </u>							
Диаметр			Выходная				
резьбы	диаметр пуансона,	скорость	мощность станка,	скорость			
резьоы	MM	вращения*, об/мин	кВт	вращения*, об/мин			
G1/8"	9.2	1800	1.7	380			
G1/4"	12.4	1600	2.1	280			
G3/8"	15.9	1400	2.6	200			
G1/2"	19.9	1200	3.2	140			
G3/4"	25.4	1000	3.8	100			
G1"	32.0	800	4.6	70			

Выходная мощность кВт:

Для того чтобы достичь требуемой осевой силы и вращающего момента, нужен станок с достаточной выходной мощностью (см. табл.). Для отверстий малых диаметров требуется меньшая осевая сила и выходная мощность, чем для больших диаметров. Выходная мощность станка определяет оптимальную скорость процесса. Быстрая обработка металла является определяющим фактором качества отверстия и, в особенности, времени службы пуансона.

Если станок для этого не достаточно приспособлен, пуансон будет проникать в металл очень медленно и оставаться слишком долго на одном месте, а инструмент сильнее изнашиваться на этапе преобразования втулки из конической в цилиндрическую форму. Вдобавок к этому, металл будет остывать, что будет вести к низкому качеству обрамляющего отверстие кольца, залипанию металла на инструмент.

Скорость подачи мм/мин:

Быстрое выполнение процесса формовки трением критично для достижения желаемого качества выполняемого отверстия. Скорость подачи изменяется в диапазоне 100-150 мм/мин (+/- 20 %) для металла толщиной 1-3 мм. Это означает, что для того, чтобы проделать отверстие \emptyset 7.3 мм в металле толщиной 2 мм, при скорости подачи 150 мм/мин требуется приблизительно 2-3 секунды от первого контакта пуансона с пластиной до возврата назад.

Скорость подачи может быть увеличена для отдельных этапов процесса, и, таким образом, повышена общая производительность процесса, в частности, при работе на ЧПУ станках. При работе с торцующими пуансонами, рекомендуется существенно увеличивать скорость подачи на последнем этапе процесса для того, чтобы материал, удаляемый при срезании кольца, успевал отделиться от инструмента.

*Примечание:

Данные приведены для Стали 45, в случае использования технологии с другими материалами, необходимо следовать следующим рекомендациям:

Нержавеющая сталь:

- диаметр пуансона для резьб М8 и больше следует выбирать на 0.1 мм больше
- скорость вращения шпинделя меньше на 10-20 %

Цветные металлы:

- скорость вращения шпинделя до 50 % больше
- скорость подачи: 150 мм/мин

Максимальная толщина стенки обрабатываемого материала

		Макси	Максимальная толщина стенки металла			Длина рабочей части				
Шаг резьбы	отверстие под резьбу Ø (мм)	Короткий (мм)	удлиненный (мм)		Удлиненный торцующий (мм)		L1 удлиненный (мм)	D2 Ø хвостовика (мм)		
Метрическая										
M2 x 0.4	1.8	1.3	2.2	1.7	2.7	5.8	7.8	6		
M3 x 0.5	2.7	1.3	2.2	1.7	2.7	6.7	8.7	6		
M4 x 0.7	3.7	1.3	2.3	1.7	2.7	8.1	10.3	6		
M5 x 0.8	4.5	1.3	2.4	1.7	2.8	9.2	11.8	6		
M6 x 1	5.4	1.3	2.7	1.7	3	10.5	13.5	8		
M8 x 1.25	7.3	1.5	3.5	2.0	4.5	13.5	18.1	8		
M10 x 1.5	9.0		4.3	2.5	5.2	16.8	22.5	10		
M12 x 1.75	10.9		4.9	2.8	5.9	19.8	26.4	12		
M14 x 2	13.0	1	5.3	3.0	7.0	23.5	31.3	14		
M16 x 2	14.8		6.4	3.5	7.5	26.9	35.4	16		
M20 x 2,5	18.7	3.7	8.0	4.5	9.0	34.1	44.3	18		
G1/8" x 28	9.2	2.0	4.3	Дюймовая 2.5	5.2	16.8	22.5	10		
G1/6 x 28 G1/4" x 19	12.4		5.5	3.0	6.5	22.4	29.8	14		
G3/8" x 19	15.9	1	6.9	3.5	8.0	28.9	37.9	16		
G1/2" x 14	19.9		8.5	4.5	9.0	36.3	47.0	18		
G3/4" x 14	25.4		10.6	5.0	11	46.4	59.6	20		
007 : X 2 :			20.0	3.0			33.0			
	Метрическая с мелким шагом									
MF4 x 0.5	3.8		2.3	1.7	2.7	8.2	10.5	6		
MF5 x 0.5	4.8		2.4	1.7	2.8	9.6	12.4	6		
MF6 x 0.75	5.6		2.7	1.7	3.0	10.8	14.2	8		
MF6 x 0.5	5.8 7.5		2.7	1.7	3.0	11.2	14.7	8		
MF8 x 1 MF8 x 0.75	7.5		3.5 3.5	2.0	4.5 4.5	14.0 14.1	18.7 18.8	8 8		
MF10 x 1.25			4.3	2.5	5.2	17.0	22.8	10		
MF10 x 1.23	9.5		4.3	2.5	5.2	17.3	23.2	10		
MF12 x 1.5	11.2		4.9	2.8	5.9	20.3	27.1	12		
MF12 x 1	11.5	1	4.9	2.8	5.9	20.8	27.8	12		
MF14 x 1.5	13.2		5.3	3.0	7.0	23.8	31.6	14		
MF16 x 1.5	15.2		6.4	3.5	7.5	27.6	36.3	16		
MF20 x 2	19.2	3.7	8.0	4.5	9.0	34,7	45,0	18		
MF20 x 1.5	19.2	3.7	8.0	4.5	9.0	35.1	45.5	18		
MF20 x 1	19.5	3.7	8.0	4.5	9.0	35.6	46.2	18		

ЧПУ программирование для процесса формовки трением

Удлиненный пуансон:

Ссылочные значения для материала Ст 2 пс, сп (S235JR) с толщиной стенки 3 мм:

диаметр отверстия под резьбу Ø (мм)	Максимальная толщина стенки (мм)	Вращение шпинделя (об/мин)*	Длина рабочей части L1 (мм)	Перемещение** (мм)	пепеменнения	Подача (мм/мин)
M6 - Ø 5.4 long (long-flat)	2.7 (3.0)	2400	13.5	12.0 (13.5)	0 - 2 2 - 4 4 - 6 6 - 11 11 - до конца	150 250 350 550 200 (900)
M8 - Ø 7.3 long (long-flat)	3.5 (4.5)	2100	18.1	16.6 (18.1)	0 - 2 2 - 4 4 - 7 7 - 14 14 - до конца	150 250 350 550 200 (900)

Увеличение скорости подачи до 1000 мм/мин в конце процесса дает лучший результат при удалении обрамляющего кольца при использовании торцующего пуансона.

При регулировании скорости подачи:

- Должна быть оптимизирована скорость процесса
- Можно воздействовать на качество формуемой втулки и обрамляющего кольца
- Можно воздействовать на время службы пуансона Все остальные данные для ЧПУ могут быть предоставлены по запросу.