SENSE LITE

Руководство по эксплуатации пульта управления электрическими печами SENSE LITE

Адрес:
ООО "ТЕПЛОМАРКЕТ"

141044, г. Мытищи, деревня Грибки,
ул. Промышленная, д. 3/1.
https://karina.market

Данное руководство по эксплуатации (далее — РЭ) изделия предназначено для владельца сауны либо ответственного за нее лица, а также для электротехнического персонала, осуществляющего установку и монтаж пульта. В нем содержатся:

- 1. Описание конструкции устройства;
- 2. Описание устройств и их работы;
- 3. Объяснение принципа действия;
- 4. Правила безопасной эксплуатации;
- 5. Дополнительные сведения, необходимые для правильного монтажа и эксплуатации изделия.

Благодарим вас за выбор нашего пульта!

ВНИМАНИЕ!

После приобретения пульта управления и до монтажа и начала эксплуатации внимательно изучите данное РЭ. Лица, не ознакомившиеся с РЭ, до монтажа, эксплуатации и обслуживания пульта управления не допускаются.

ВНИМАНИЕ!

Обслуживание оборудования должно осуществляться **строго** квалифицированным техническим персоналом.

ЗАПРЕЩАЕТСЯ!

Самостоятельное подключение, техническое обслуживание и ремонт пульта управления. Все работы должны выполняться электротехническим персоналом, имеющим допуск к работе с электроустановками до 1000В.

После завершения монтажа и установки пульта управления эта инструкция должна быть передана владельцу сауны или лицу, ответственному за ее эксплуатацию.

2. Оглавление:

1.	Введение	1	L
2.	Оглавление	2	2
3.	Руководство по эксплуатации	. 3	3
	3.1. Описание	3	3
	3.2. Назначение изделия	. 3	3
	3.3. Технические характеристики	4	ŀ
	3.4. Состав изделия	5	5
	3.5. Описание и работа модулей	5	į
	3.6. Инструмент и принадлежности		
	3.7. Маркировка		
	3.8. Пломбирование		
	3.9. Упаковка	17	7
4.	Монтаж	18	3
	4.1. Монтаж и подключение блока мощности	18	3
	4.2. Монтаж и подключение дисплейного модуля	26	ó
	4.3. Монтаж и подключение датчика температуры		
5.	Работа устройства		
	Режимы работы и интерфейс устройства		
	6.1. Включение устройства		
	6.2. Режим ожидания		
	6.3. Отложенный запуск		
	6.4. Рабочий режим		
	6.5. Аварийные режимы		
7.	Обслуживание ПУ		
	7.1. Общие указания и периодичность обслуживания	46	į
	7.2. Возможные неисправности и их устранение		
	7.3. Текущий ремонт		
8.	Хранение		
	Транспортировка		
	— — — — — — — — — — — — — — — — — — —		

3. Руководство по эксплуатации

3.1. Описание

Пульт управления (ПУ) ТМ KARINA "SENSE LITE" представляет собой комплекс технических средств, состоящий из:

- 1. Блока коммутации нагрузки ("Блока мощности");
- 2. Дисплейного модуля;
- 3. Датчика температуры;
- 4. Коммутационных проводов;
- 5. Предустановленного программного обеспечения от производителя (далее ПО).

ВНИМАНИЕ!

Предприятие-производитель оставляет за собой право вносить изменения в конструкцию и ПО изделия, не ухудшающие его потребительские свойства.

3.2. Назначение изделия

Изделие предназначено для подключения и управления следующим оборудованием в парной:

- Электрокаменок TM KARINA всего модельного ряда (ограничение по мощности см. <u>Табл.1</u>).
- Электрокаменок сторонних производителей (ограничение по мощности см. Табл.1).
- Освещения (ограничение по мощности см. Табл. 1).

Областью применения являются частные и общественные банные помещения сухого (сауна) и влажного (русская баня) типа.

ЗАПРЕЩАЕТСЯ!

Использовать данное устройство в других целях.

3.3. Технические характеристики

Таблица 1. Технические характеристики ПУ "SENSE LITE":

Максимальная мощность подключаемой каменки 3 фазы, кВт *	18
Максимальная мощность подключаемой каменки 1 фазы, кВт *	9
Максимальная мощность подключаемого освещения, кВт	0,5
Номинальное напряжение питания пульта, В **	230
Частота, Гц **	50
Диапазон поддерживаемой температуры, °С	0-120
Критическая температура, °С ***	125
Гистерезис температуры, °С (настраиваемый) ****	3 (до 10)
Шаг установки температуры, °C	1
Диапазон времени таймера работы / (шаг), ч / (мин)	0:15-23 / (15)
Диапазон времени таймера отсроченного запуска / (шаг), ч / (мин)	0-23 / (15)
Возможность управления освещением	Да
Габаритные размеры дисплейного модуля (с монтажной частью), ШхВхГл, мм	88 x 88 x 43
Габаритные размеры дисплейного модуля (дисплейная часть), ШхВхГл, мм	88 x 88 x 11
Габаритные размеры "блока мощности", ШхВхГл, мм	326 x 160 x 61
Масса изделия, г	2950
Рабочая температура эксплуатации дисплея и "блока мощности", °C	+10 + 35
Относительная влажность воздуха при эксплуатации (при T \leq +35 °C)	до 80 %

^{*} Мощности, указанные в Табл. 1, рассчитаны при стандартных значениях номиналов электросетей.

^{**} Номиналы электрических сетей и их стандартные значения, а также диапазон используемого напряжения, необходимые для эксплуатации изделия, определяются по ГОСТ 29322-2014 (IEC60038:2009)

^{***} Аварийная температура, при которой происходит автоматическое отключение магнитного контактора. Подробнее в п. 6.5.3 "Аварийные режимы. Режиме превышения температуры"

^{****} Настраиваемые значения по умолчанию установлены на предприятии-изготовителе согласно Табл. 4. "Значения настраиваемых параметров по умолчанию"

3.4. Состав изделия

ПУ "SENSE LITE" имеет модульную организацию. Перечень представлен в Табл. 2.

Таблица.2: Перечень модулей ПУ "SENSE LITE".

Блок мощности, шт.	1
Перемычка. Двухштырьковая, шт.	3
Перемычка. Трёхштырьковая, шт.	1
Перемычка. Четырёхштырьковая, шт.	1
Дисплейный модуль, шт.	1
Датчик температуры, шт.	1
Кабель сигнальный 5м (датчик -> дисплей), шт.	2
Кабель соединительный 5м (блок мощности	1
Подрозетник для монтажа, шт.	1

3.5. Описание и работа модулей

1. "Блок мощности" - Модуль коммутации нагрузки.

Состоит из:

1.1. Корпуса с крышками - двухсекционного короба, выполненного в форме прямоугольного параллелепипеда из нержавеющей стали с крышками. (Рис.1.: "Блок мощности". С крышками. Вид спереди., Рис. 2.: "Блок мощности". С крышками. Изометрия)

На задней стенке корпуса вырезаны отверстия в виде самоцентрирующихся подвесов для настенного монтажа. (Рис. 3. "Блок мощности". С крышками. Вид сзади).

Взаимное расположение составных частей "Блока мощности" представлено на (Рис. 4.: "Блок мощности". Без крышек. Вид спереди., Рис. 5.: "Блок мощности". Без крышек. Изометрия).

- 1.2. Кабельными вводами для подведения и фиксации проводников питания и нагрузки:
- PG-21 2 шт. Ввод / вывод силовых проводников.
- PG-11 1 шт. Подключение дисплея.
- PG-9 1 шт. Подключение освещения.
- 1.3. Магнитного контактора.

Электромеханического устройства, коммутирующего электропечь с электросетями, управляемого "платой управления". Контактор подключен на предприятии-изготовителе и не требует дополнительной протяжки контактов до истечения гарантийного срока эксплуатации. По истечению гарантийного срока проводить осмотр и протяжку контактных групп контактора не реже, чем раз в полгода.

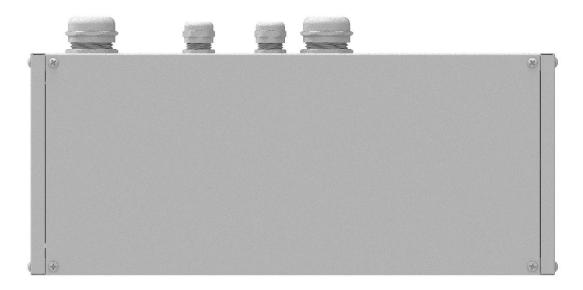


Рис. 1.: "Блок мощности". С крышками. Вид спереди.

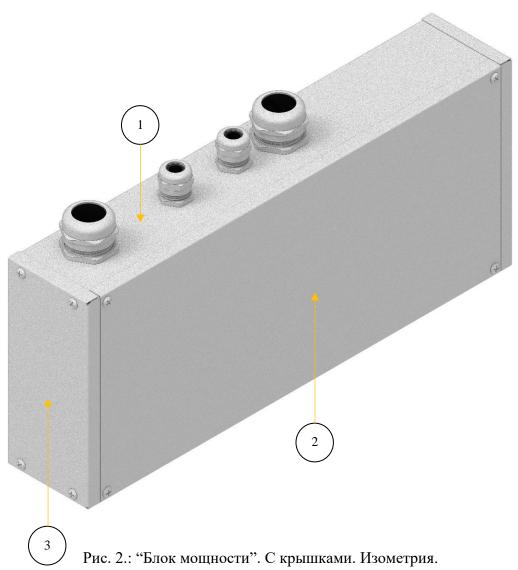


Рис. 2.: "Блок мощности". С крышками. Изометрия. Взаимное расположение частей модуля:

1 – Двухсекционный корпус,

2 – Крышка передняя, 3 – Крышка торцевая.

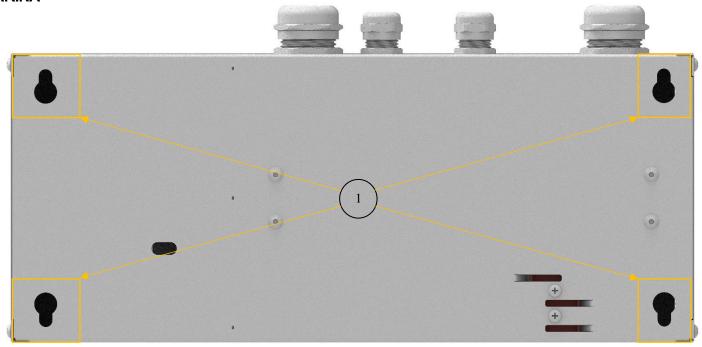


Рис.3.: "Блок мощности". С крышками. Вид сзади. 1 — Самоцентрирующиеся подвесы

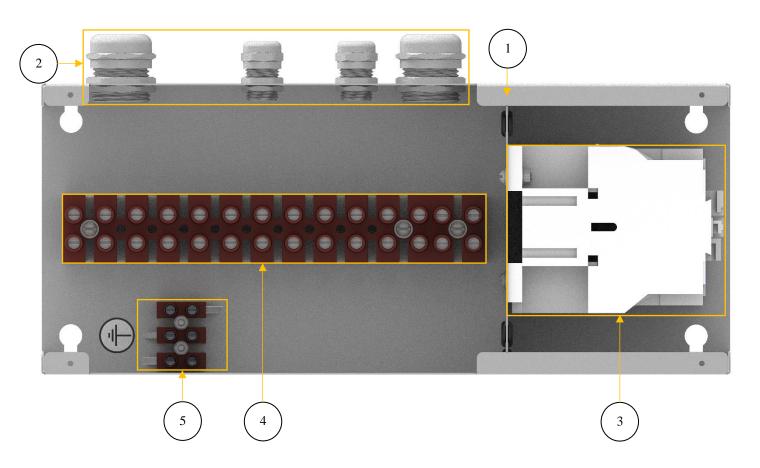


Рис. 4.: "Блок мощности". Без крышек. Вид спереди. Взаимное расположение частей модуля:

- 1 Двухсекционный корпус, 2 Кабельные вводы,
- 3 Магнитный контактор, 4 Колодочная сборка, 5 Колодка заземления.

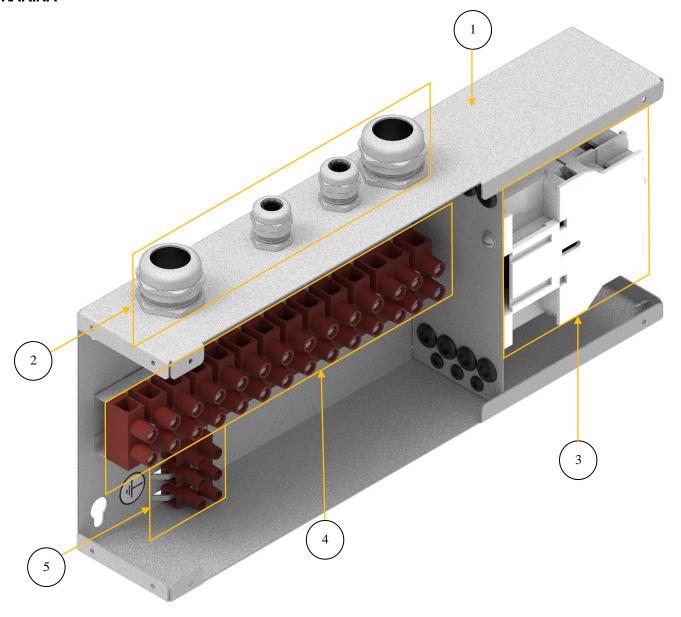


Рис. 5.: "Блок мощности". Без крышек. Изометрия. Взаимное расположение частей модуля: 1 — Двухсекционный корпус, 2 — Кабельные вводы, 3 — Магнитный контактор, 4— Колодочная сборка, 5 — Колодка заземления.

- 1.4. "Колодочной сборки" комплекта-сборки из винтовых клеммных колодок, установленной на суппорт и предназначенной для:
- 1. Подключения устройства к электросети.
- 2. Подключения дисплея к блоку мощности
- 3. Подключения электропечи: в качестве трёхфазной симметричной (трёхпроводная схема с нейтральным проводом) или однофазной нагрузки.
- 4. Подключение блока питания освещения к блоку мощности.

(Рис. 6.: Колодочная сборка. Вид спереди., Рис. 7.: Колодочная сборка. Изометрия.)

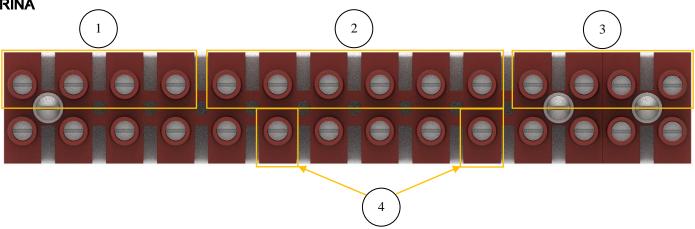


Рис. 6.: "Колодочная сборка". Вид спереди. Взаимное расположение частей модуля:

1-Вводная группа ("Ввод"), 2-Группа подключения дисплейного модуля ("Дисплей"),

3 – Группа подключения печи ("Печь"), 5 – Группа подключения освещения ("Свет").

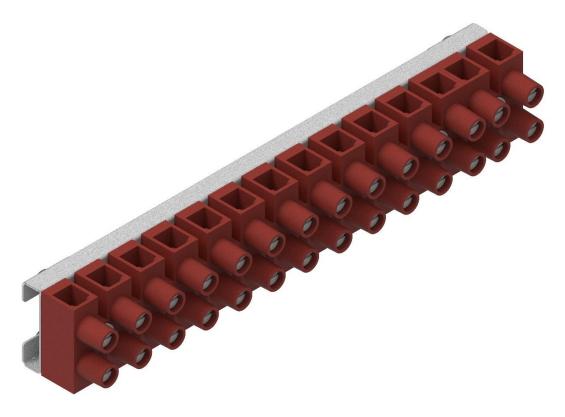
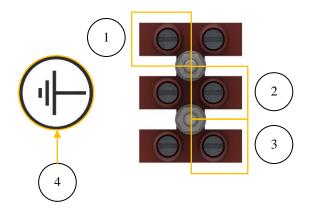



Рис. 7.: "Колодочная сборка". Изометрия.

1.5. Колодки заземления — винтовой клеммной колодки, предназначенной для заземления корпуса блока мощности, блока питания освещений, корпуса печи. (Рис. 8.: Колодка заземления. Вид спереди., Рис. 9.: Колодка заземления. Изометрия.)

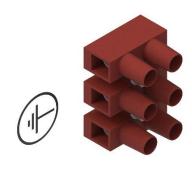


Рис 8.: Колодка заземления. Вид спереди.

Рис 9.: Колодка заземления. Изометрия.

Взаимное расположение частей:

- 1 Заземление вводной группы ("Ввод"), 2 Заземление группы освещения ("Свет"), 3 Заземление выводной группы ("Печь"), 4 Наклейка колодки заземления.
- 1.6. Контактные перемычки используются для коммутации колодочной сборки под трёхфазную или однофазную нагрузку (в зависимости от типа подключаемой печи). Являются частью комплектации.

Для подключения трёхфазной нагрузки используйте трёхштырьковую перемычку (<u>Рис.10., Перемычка. Трёхштырьковая. Вид спереди.</u>), (<u>Рис. 11., Перемычка. Трёхштырьковая. Изометрия</u>), согласно схеме подключения (<u>Рис. 23.: Схема подключаемых проводников и перемычек. Трёхфазное подключение.</u>)

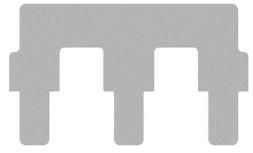


Рис 10.: Перемычка. Трёхштырьковая. Вид спереди.

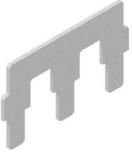


Рис 11.: Перемычка. Трёхштырьковая. Изометрия.

Для подключения однофазной нагрузки используйте двухштырьковые (<u>Рис. 12., Перемычка.</u> Двухштырьковая. Вид спереди.), (<u>Рис. 13., Перемычка. Двухштырьковая. Изометрия.</u>) и четырёхштырьковую (<u>Рис. 14., Перемычка. Двухштырьковая. Вид спереди.</u>), (<u>Рис. 15., Перемычка. Двухштырьковая. Изометрия.</u>) перемычки, согласно схеме подключения. (<u>Рис. 24.: Схема подключаемых проводников и перемычек. Однофазное подключение. Жёсткие перемычки.</u>).



Рис 12.: Перемычка. Двухштырьковая. Вид спереди.

Рис 13.: Перемычка. Двухштырьковая. Изометрия.

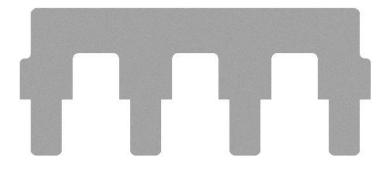


Рис 14.: Перемычка. Двухштырьковая. Вид спереди.

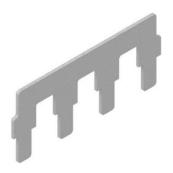


Рис 15.: Перемычка. Двухштырьковая. Изометрия.

2. Дисплейный модуль.

Электронное устройство, предназначенное для управления нагрузками, подключаемыми к блоку мощности, а также для вывода информации на матрицу дисплея в виде пользовательского графического интерфейса (GUI). Для взаимодействия человека с интерфейсом в дисплейный модуль интегрирован ёмкостной тачскрин, защищённый стеклом. Интерфейс предоставляет возможность управления и настройки устройства, а также выводит информацию о текущих параметрах, значение с датчика, таймеров, режиме работы и другой информации (Подробнее в разделе "Интерфейс").

Дисплейный модуль состоит из:

2.1. Корпуса с дисплеем. (Рис. 16: Дисплейный модуль. Вид спереди., Рис. 17.: Дисплейный модуль. Изометрия).

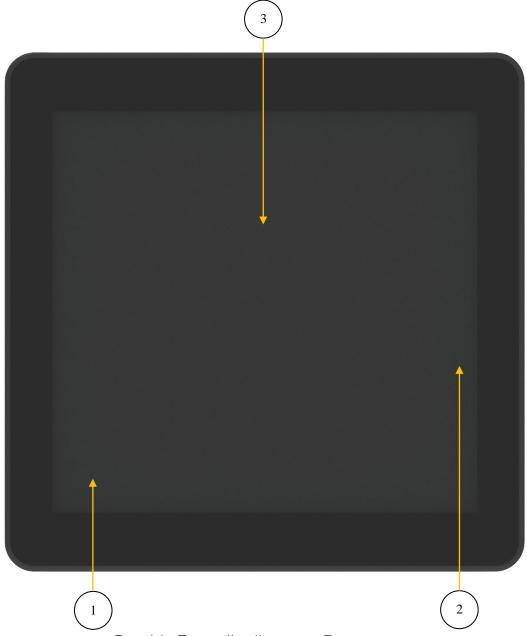


Рис. 16.: Дисплейный модуль. Вид спереди. Взаимное расположение частей модуля: 1 – Корпус, 2 – Защитное стекло, 3 – Тачскрин.

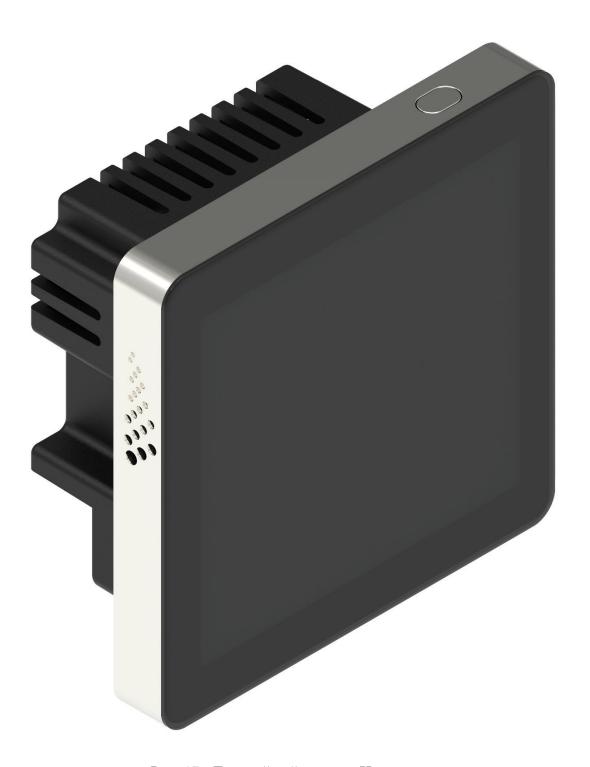


Рис. 17.: Дисплейный модуль. Изометрия.

2.2. Задней крышки (Рис. 18.: Дисплейный модуль. Вид сзади., Рис. 19.: Дисплейный модуль. Изометрия.).

Задняя крышка имеет специальную форму для монтажа в подрозетник, с вырезом под колодки подключения дисплея к "Блоку мощности" и разъёмом для подключения температурного датчика.

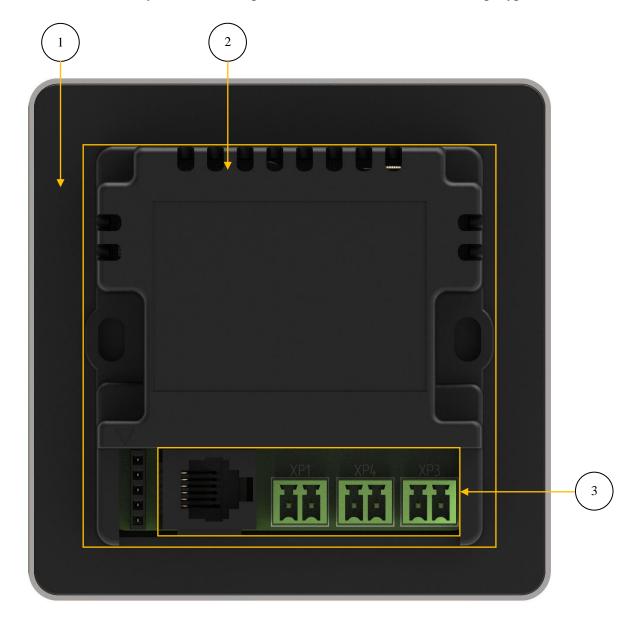


Рис. 18.: Дисплейный модуль. Вид сзади. Взаимное расположение частей модуля: 1-3адняя крышка,

- 2 Разъём для монтажа в подрозетник,
- 3 Разъём и колодки для подключения кабелей.

Рис. 19.: Дисплейный модуль. Изометрия.

3. Датчик температуры.

3.1. "Датчик температуры" (Рис. 20.: Датчик температуры. Вид спереди., Рис.21.: Датчик температуры. Изометрия.).

Электронное устройство, выполненное в виде выносного модуля с разъёмом подключения, предназначенное для считывания температуры в парном помещении и передачи на микропроцессор "дисплейного модуля" для последующей обработки.

Диапазон рабочих температур от $0 \, ^{\circ}$ C до $+ \, 120 \, ^{\circ}$ C. (Программно ограничен).

Погрешность измерений: ± 0.5 °C в диапазоне от 0 °C до 70 °C.

 ± 2.0 °С в диапазоне от +70 °С до +120 °С.

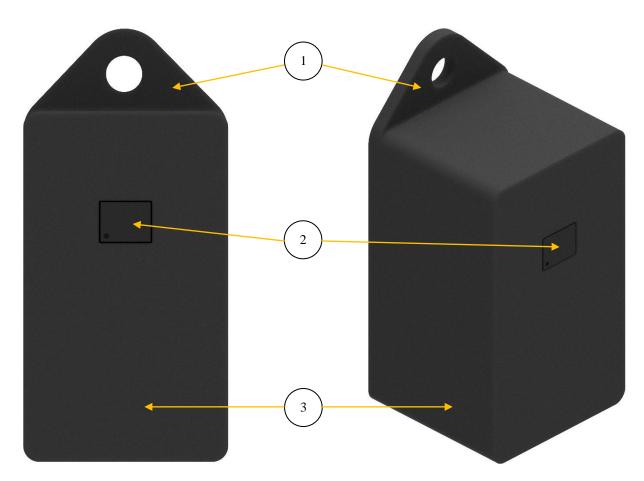


Рис. 20.: "Датчик температуры" Вид спереди.

Рис. 21.: "Датчик температуры" Изометрия

Взаимное расположение частей модуля: 1 – Задняя крышка с крепёжным отверстием,

2 – Сенсор, 3 – Коробочка.

3.3. Материал корпуса датчика.

Корпуса датчиков выполнены из нетоксичного композиционного материала, выдерживающего температуру вплоть до $155\,^{\circ}\mathrm{C}$.

Ссылка на отчёт об испытаниях материала: https://www.esun3d.com/uploads/ePA-CF-filament-ROHS.pdf

3.6. Инструмент и принадлежности

Для ПУ "SENSE LITE" ЗИП не предусмотрен. Штатная комплектация устройства описана в Табл. 2.

3.7. Маркировка

Маркировка устройства не предусмотрена предприятием-изготовителем.

3.8. Пломбирование

На предприятии-изготовителе нанесены пломбы на торцевую крышку отсека магнитного контактора. Нарушение пломб – одна из причин отказа в гарантии.

3.9. Упаковка

Пульт управления ТМ KARINA "SENSE LITE" поставляется упакованным в закрытой картонной коробке, габаритными размерами 477 х 241 х 122 мм. Блок мощности, дисплейный модули и датчик температуры дополнительно фиксируются в пенополиэтилен.

4. МОНТАЖ

Перед монтажом ПУ необходимо проверить его целостность и комплектность, а также убедиться, что выбранная модель пульта по своим параметрам подходит для работы с данной моделью электрокаменки.

ВНИМАНИЕ!

Обслуживание оборудования должно осуществляться **строго** квалифицированным техническим персоналом.

ВНИМАНИЕ!

Перед началом монтажных работ убедитесь, что источник электроэнергии, к которому производится подключение ПУ и электрокаменки, обесточен.

ВНИМАНИЕ!

Монтаж и эксплуатация ПУ и ЭКП должны осуществляться в строгом соответствии с Постановлением Правительства РФ от 25.04.2012 №390 (ред. от 06.04.2016) «О противопожарном режиме» вместе с «Правилами противопожарного режима в РФ».

Мощность электрокаменки должна соответствовать объему парильного помещения.

Эксплуатация ПУ разрешается только с последовательно включенными плавкими предохранителями или автоматическим выключателем соответствующего номинального тока.

ЗАПРЕЩАЕТСЯ!

Самостоятельное подключение, техническое обслуживание и ремонт пульта управления. Все работы должны выполняться электротехническим персоналом, имеющим допуск к работе с электроустановками до 1000В.

Монтаж ПУ "SENSE LITE" разделён на три части:

- 1. Монтаж и подключение "блока мощности".
- 2. Монтаж и подключение дисплейного модуля.
- 3. Монтаж и подключение датчика.

4.1. Монтаж и подключение "блока мощности"

1. Блок мощности необходимо устанавливать вне парильного помещения, в сухом, отапливаемом помещении, а также обеспечить защиту от влаги (прямое попадание воды на изделие). Монтаж произвести на дюбель-гвозди диаметром 6 мм (не входят в комплект). Расстояние между дюбель-гвоздями 294 мм (Рис.22.: Блок мощности. Вид сзади.). Допускается устанавливать блок мощности в электрощите или закрывать фальшпанелью, в которых предусмотрена система приточной вентиляции или вентиляционные отверстия.

ВНИМАНИЕ!

Для правильного функционирования магнитного контактора, используемого в "блоке мощности", предельный допуск угла отклонения установки блока должен составлять не более 30°.

ЗАПРЕЩАЕТСЯ!

Установка блока в положениях кроме как "кабельными вводами в пол" / "кабельными вводами в потолок".

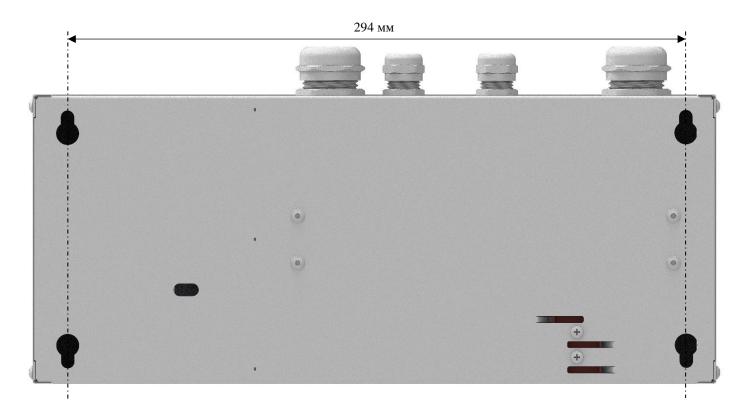


Рис. 22.: Блок мощности. Вид сзади.

2. Схемы подключения блока мощности к сети питания, дисплейному модулю, блоку питания освещения.

В зависимости от типа печи используйте одну из следующих схем подключения:

Рис. 23.: Схема подключаемых проводников и перемычек. Трёхфазное подключение.

Рис. 24.: Схема подключаемых проводников и перемычек. Однофазное подключение. Жёсткие перемычки.

Рис. 26.: Схема подключаемых проводников. Дисплей.

Рис. 27.: Схема подключаемых проводников. Освещение.

Для подключения ПУ "SENSE LITE" к сети и исполнительным устройствам, рекомендуется использовать следующие марки и сечения проводников:

Вводной ("Питающий кабель" стрелка "ВВОД"):

ВВГнг; КГнг**

Дисплей ("Стрелка "Дисплей"):

КГВВнг(A)-LS 7 х 0.75 мм² (стандартная комплектация)

Подключение блока питания освещения (Стрелка "СВЕТ"):

ПРКС $3 \times 1.5 \text{ мм}^2$

Подключение электропечи **(Стрелка "ПЕЧЬ"):

ПРКС**

При подключении нагрузки к "блоку мощности", руководствоваться ограничениями выделяемой мощности, согласно <u>Табл 1</u>.

** Выбор сечения проводника для подключения электрокаменки осуществлять в зависимости от мощности выделяемой нагрузки (необходимое сечение кабеля указано в инструкции по эксплуатации электрокаменки), но не более мощности, указанной в <u>Табл. 1</u>. Так же можно использовать любой аналог термостойкого кабеля, отвечающего условиям проектной документации.

Проводники, соединяемые перемычками, опрессовать в наконечник типа НШВ, подходящего диаметра.

Перемычки установить, согласно выбранной схеме подключения. Рекомендуется устанавливать перемычку поверх кабеля так, чтобы винт колодки упирался в перемычку.

*При монтаже однофазного блока мощности на 9 кВт изготовить мягкие перемычки из медного проводника "по месту". Выбор сечения проводника осуществить согласно <u>Табл.1</u>. Подключение осуществить согласно: <u>Рис. 25.: Схема подключаемых проводников и перемычек. Однофазное подключение. Мягкие перемычки.</u>

Для удобства монтажа на передней крышке блока мощности добавлена наклейка с обозначениями подключаемых перемычек и проводников. (Рис. 28.: Наклейка.)

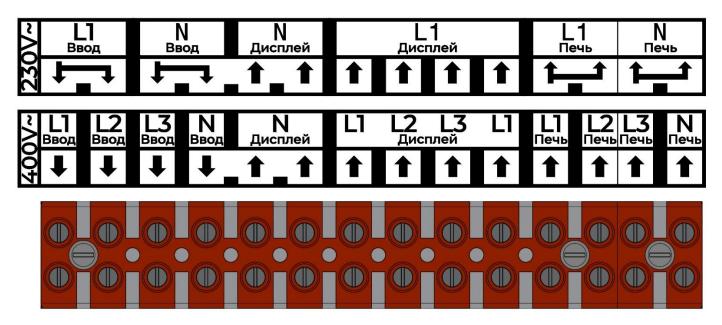


Рис. 28.: Наклейка.

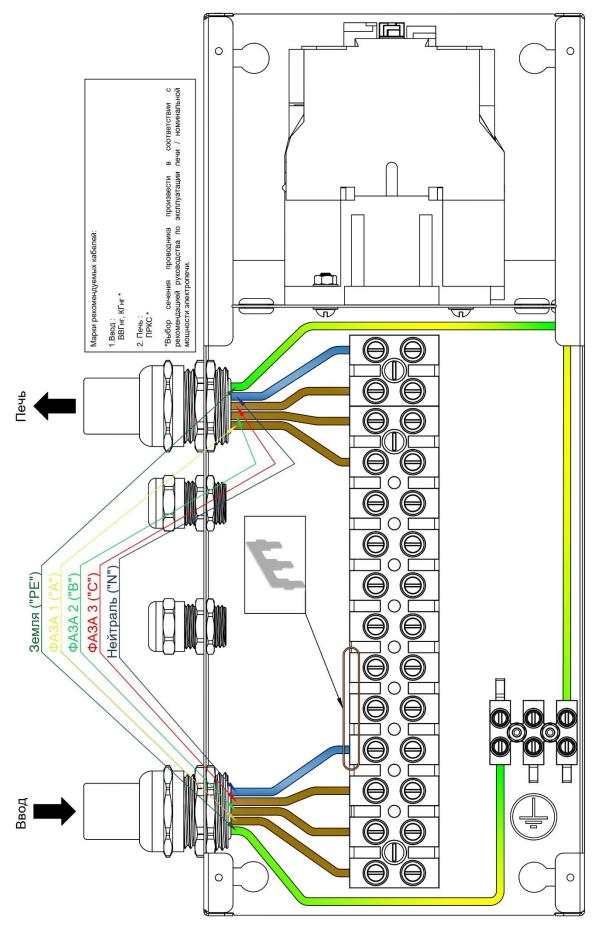


Рис. 23.: Схема подключаемых проводников и перемычек. Трёхфазное подключение.

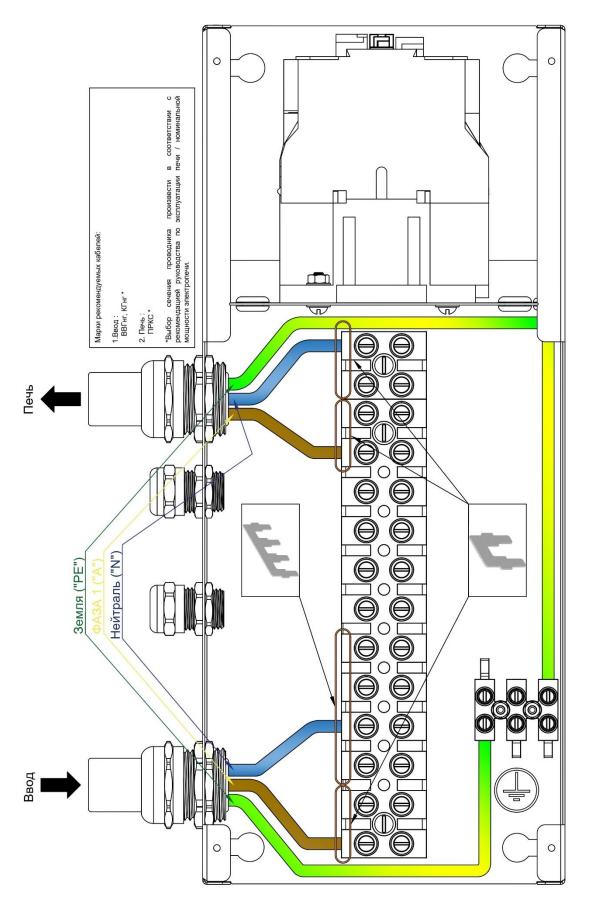


Рис. 24.: Схема подключаемых проводников и перемычек. Однофазное подключение. Жёсткие перемычки.

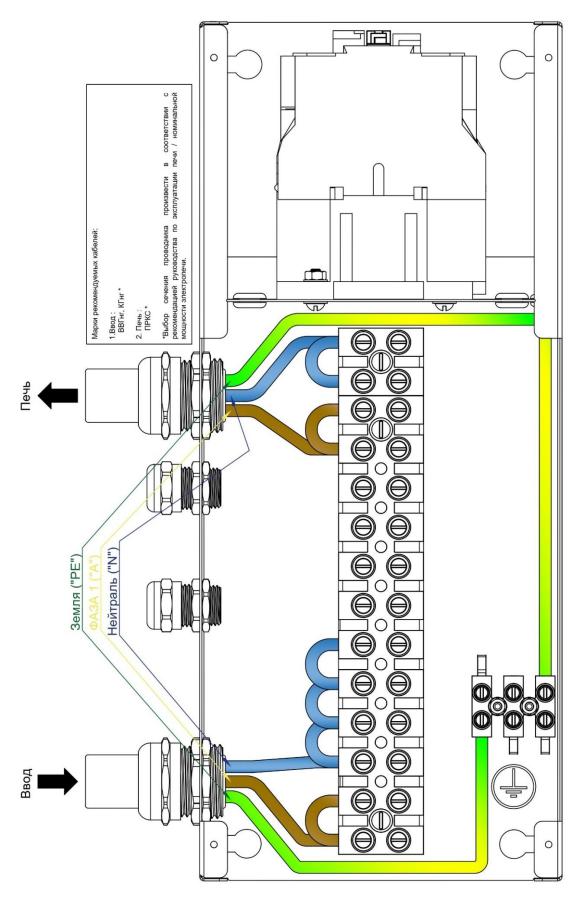


Рис. 25.: Схема подключаемых проводников и перемычек. Однофазное подключение. Мягкие перемычки.

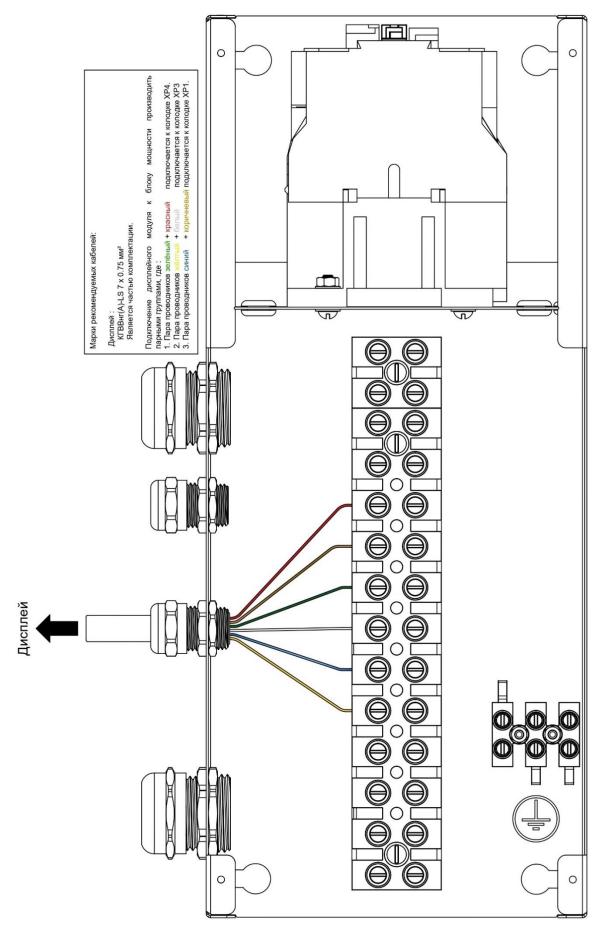


Рис. 26.: Схема подключаемых проводников. Дисплей.

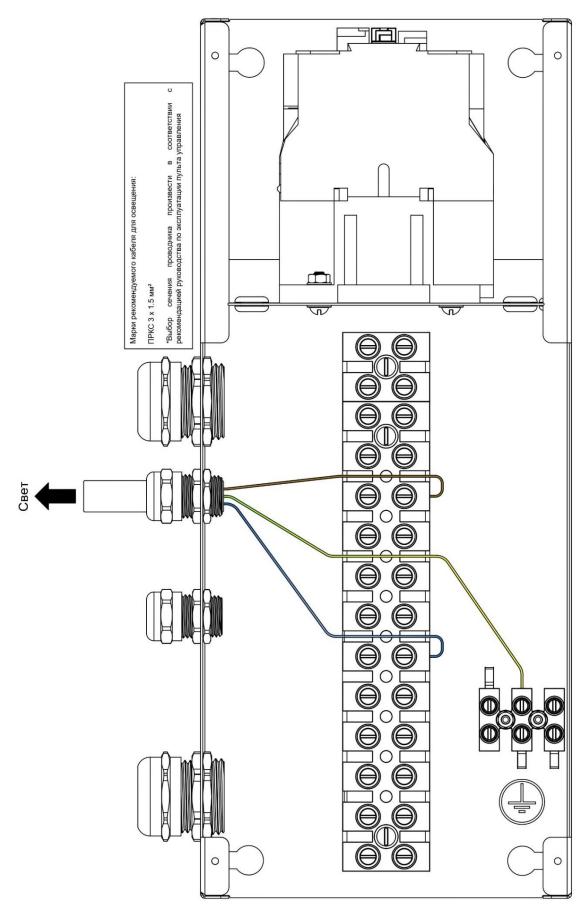


Рис. 27.: Схема подключаемых проводников. Освещение.

4.2. Монтаж и подключение дисплейного модуля

Дисплейный модуль необходимо устанавливать вне парильного помещения (предбанник) на высоте, удобной для использования. А также обеспечить защиту от попадания влаги. Ниже приведены эскизы для обеспечения удобства планирования монтажных работ:

- Рис. 29: Дисплейный модуль. Эскиз. Вид спереди.
- Рис. 30: Дисплейный модуль. Эскиз. Вид сзади.
- Рис. 31: Дисплейный модуль. Эскиз. Вид снизу.

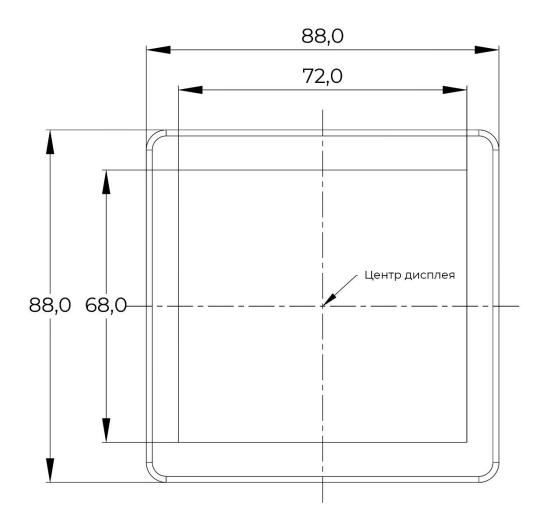


Рис. 29: Дисплейный модуль. Эскиз. Вид спереди.

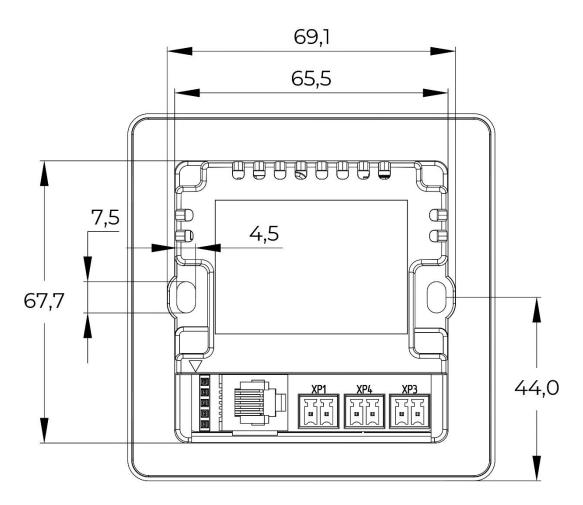


Рис. 30: Дисплейный модуль. Эскиз. Вид сзади.

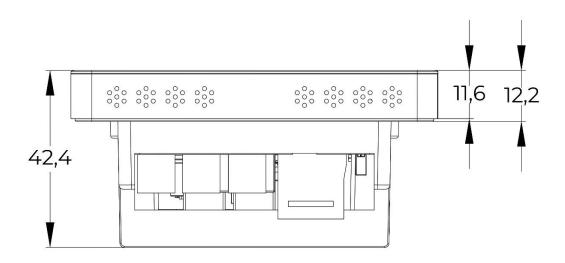


Рис. 31.: Дисплейный модуль. Эскиз. Вид снизу.

Для монтажа используйте подрозетник квадратного сечения, являющийся частью комплектации. Шаблон для сверления подрозетника поставляется в комплекте с устройством.

Этапы монтажа дисплейного модуля:

Шаг 1. Произведите монтаж подрозетника и заведите в него соединительный провод КГВВнг(A)-LS для подключения дисплейного модуля к "блоку мощности".

Шаг 2. Руками разъедините дисплейный модуль на две части (Блок питания / коммутации, Дисплейный блок). (Рис 32: Дисплейный модуль. Разъединение. Изометрия.)

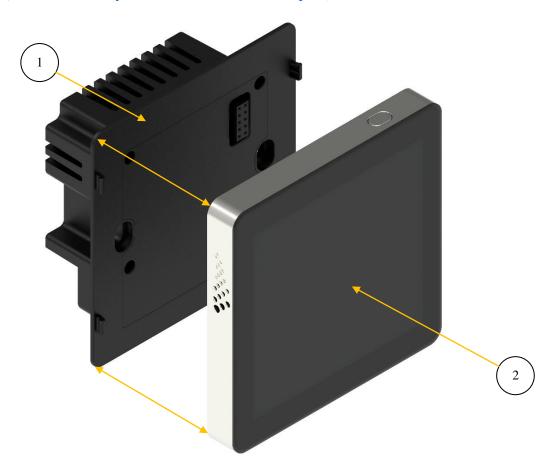


Рис. 32.: Дисплейный модуль. Разъединение. Изометрия. 1- Блок питания / коммутации, 2- Дисплейный блок.

Шаг 3. Произведите подключение провода к блоку питания / коммутации парными группами в соответствии с "Рис. 26.: Схемой подключаемых проводников. Дисплей", а также в соответствии с Рис 33: Подключение дисплейного модуля к блоку мощности, где:

- Пара проводников (синий + коричневый) объединены в колодку и подключаются к разъёму XP1
- Пара проводников (красный + зелёный) объединены в колодку и подключаются к разъёму XP4
- Пара проводников (белый + желтый) объединены в колодку и подключаются к разъёму XP3

Шаг 4. Произведите подключение сигнального проводника для датчика температуры вилкой типа RJ12 (6P6C) в разъём типа TJ3 (6P6C) (Рис 33 П4). Сигнальный проводник обжат симметрично.

* При несоответствии цветовой маркировки парных групп соединительного провода, идущего в комплекте с устройством, руководствоваться логикой подключения, описанной в данном разделе, опираясь на <u>Puc.: 26</u>, <u>Puc.: 33</u>.

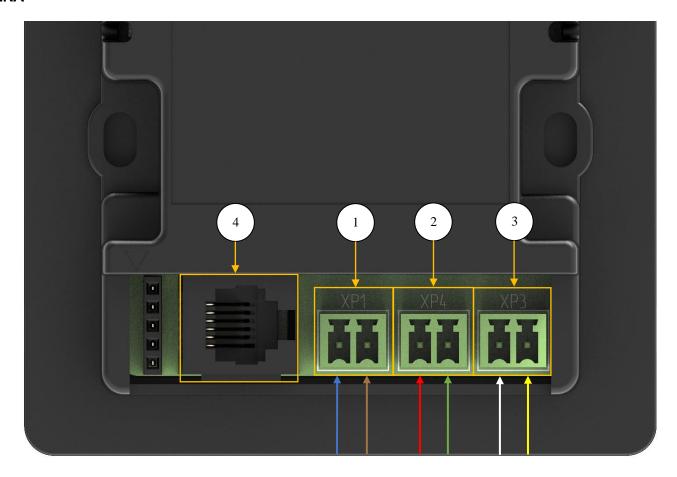


Рис. 33.: Подключение дисплейного модуля к блоку мощности. 1. Колодка XP1 — Разрыв фазы. Катушка контактора. Синий + коричневый.

- 2. Колодка XP4 Разрыв фазы. Фаза блока питания освещения. Красный + зелёный.
 - 3. Колодка XP3 Питание дисплейного модуля. Белый + жёлтый.
- 4. Разъём типа ТЈ3 Подключения сигнального проводника датчика температуры.

Шаг 5. Закрепите смонтированный блок питания / коммутации нагрузки дисплейного модуля в подрозетник. (Рис. 34: Монтаж блока питания коммутации. Изначальное состояние., Рис. 35 Монтаж. Блока питания / коммутации. Собранное состояние.)

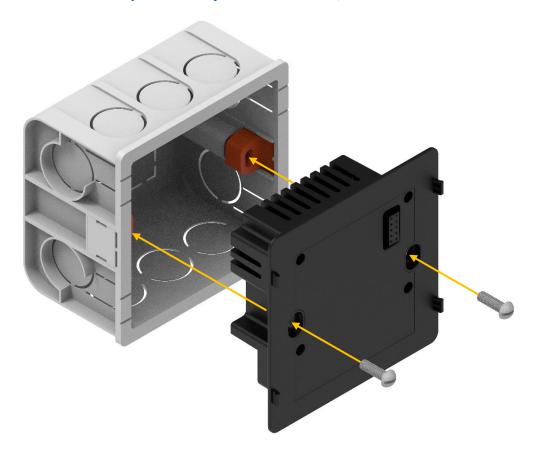


Рис. 34.: Монтаж блока питания / коммутации. Изначальное состояние.

Рис. 35.: Монтаж. Блока питания / коммутации. Собранное состояние

Шаг 6. Подсоедините дисплейный блок к блоку питания / коммутации путём прижатия одной детали к другой до защёлкивания, в соответствии с разъёмами на элементах. (Рис. 36: Монтаж дисплейного блока . Изначальное состояние.)

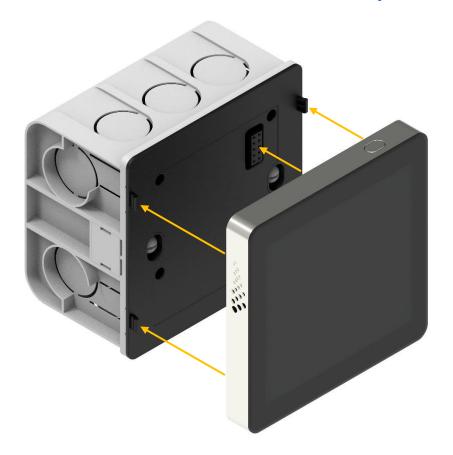


Рис. 36.: Монтаж дисплейного блока. Изначальное состояние.

Рис. 37.: Монтаж дисплейного блока. Собранное состояние.

4.3. Монтаж и подключение датчика температуры

1. Датчик температуры следует устанавливать в парном помещении (зоне приёма процедур), прокладывая соединительный кабель под обшивкой. Для обеспечения термоизоляции, механической и электромагнитной защиты соединительный кабель ШТПЛ 4х0,12 необходимо размещать в металлорукаве. Металлорукав приобретается покупателем самостоятельно. Рекомендуемый тип- МРПИ-15 или аналогичный, диаметром от 15 мм, с запасом по сечению для удобства монтажа и упрощения процесса последующего обслуживания.

Металлорукав и металлические элементы, в которые он входит или к которым он крепится, должны быть заземлены. Заземляющий проводник должен быть отдельным (отдельной жилой), иметь надлежащий контакт с корпусом металлорукава и вести к местам заземления, предусмотренным общей системой заземления изделия/сооружения. Требования к заземлению должны соответствовать ГОСТ Р 58882-2020 «Заземляющие устройства. Системы уравнивания потенциалов. Заземлители. Заземляющие проводники. Технические требования»

ВНИМАНИЕ!

Во избежание наводок и некорректной работы ПУ не допускается прокладка силовых и управляющих кабелей в одном кабель-канале.

Расстояние между ними должно быть НЕ МЕНЕЕ 30 см.

ЗАПРЕЩАЕТСЯ!

Прокладка сигнального кабеля вдоль силовых кабелей высокого напряжения.

Располагать датчик температуры следует на расстоянии 200 мм. от потолка и не менее 1000 мм. от печи, а также не менее 500 мм. от направленных потоков воздуха (вытяжной вентилятор). Поток воздуха вблизи датчика охлаждает его и приводит к неточности показаний пульта управления. В результате возможен перегрев каменки. Не допускается установка датчика рядом с дверью или окном.

2. Подключение датчика к дисплейному модулю осуществляется посредством сигнального проводника, симметрично обжатого наконечниками RJ12. Одна часть проводника подключается при монтаже дисплейного модуля (Пункт 4.2. Шаг 4.). Вторая часть проводника аналогично подключается к датчику температуры в разъём типа TJ3 (6Р6С) (Рис 38.: Датчик температуры. Вид сзади.)

ВНИМАНИЕ!

При выполнении монтажных работ не допускается осуществлять протяжку кабеля за разъем RJ-12 (джек). Данное действие может привести к механическому повреждению изоляции, жил кабеля и нарушению целостности соединителя.

- 3. Для монтажа к стене в датчике температуры предусмотрено отверстие.
- 1 Разъём типа ТЈЗ (6Р6С). Подключение сигнального кабеля.
- 2 Монтажное отверстие.

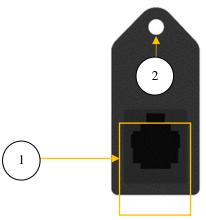


Рис. 38.: Датчик температуры. Вид сзади.

5. Работа устройства

Работа устройства заключается в поддержании и контроле параметров в парной, заданных конечным пользователем. Программное обеспечение, электронные / электромеханические устройства, лежащие в основе ПУ, обеспечивают работу:

- 1. Графического интерфейса (GUI), отображающего:
- Текущую температуру (в °С);
- Отсчёт отложенного времени до сеанса;
- Отсчёт времени сеанса;
- Заданную температуру (в °С);
- Заданное отложенное время до сеанса;
- Заданное время сеанса;
- Текущий режим работы;
- Статуса освещения (вкл. / выкл.);
- Статус звукового оповещения (вкл. / выкл.);
- Общее время наработки печи;
- Общее время наработки текущего сеанса;
- Общее время наработки ТЭНов;
- Версию программного обеспечения дисплея;
- Версию программного обеспечения пульта управления.
- 2. Программы настройки, контроля и поддержания заданных параметров:
- Температуры в парной с учётом гистерезиса;
- Температурного гистерезиса;
- Времени сеанса;
- Времени отложенного запуска;
- Включение / выключение освещения;
- Включение / выключение звуковой индикации;
- Яркости дисплея;
- Сброс учёта времени наработки ТЭНов;
- Включение режимов работы.
- 3. Периферийного оборудования для:
- Коммутация электрокаменки с электросетями;
- Коммутация освещения с электросетями;
- Датчика температуры;
- Дисплея.

6. Режимы работы и интерфейс устройства

Виртуально работа устройства разделена на 5 режимов.

6.1. Включение устройства

Включение устройства происходит при подаче питающего напряжения на ПУ. Последовательно происходит включение "платы управления", дисплейного модуля, а также инициализация всей периферии устройства. На дисплее отображается загрузочный экран с логотипом. (<u>Рис.39.:</u> Загрузочный экран с логотипом "KARINA".).

Рис. 39.: Загрузочный экран с логотипом "KARINA".

6.2. Режим ожидания

После включения устройство переходит в режим ожидания, предназначенный для настройки параметров перед запуском других режимов (кроме аварийного), а на дисплей выводится первая "Главная" (Рис. 40.: Взаимное расположение элементов интерфейса "Главной" страницы".) вкладка интерфейса со следующей информацией:

- 1. Температура в парном помещении.
- 2. Заданное время сеанса.
- 3. Заданное время отложенного запуска.
- 4. Пиктограмма включения / выключения освещения в парной с индикацией.
- 5. Пиктограмма перехода на страницу "Пользовательские настройки".
- 6. Пиктограмма переключения режимов работы устройства с индикацией.

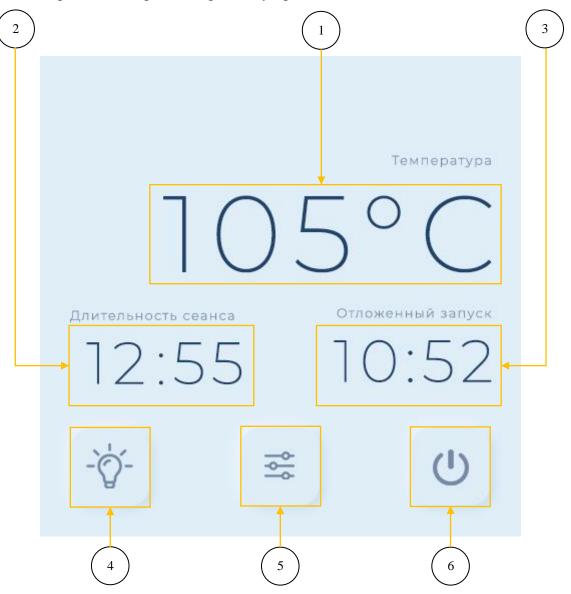


Рис. 40.: Взаимное расположение элементов интерфейса "Главной" страницы.

Настройка параметров производится на второй странице интерфейса - "Пользовательские настройки". (Рис. 41.: Взаимное расположение элементов интерфейса страницы "пользовательские настройки".) Переход осуществляется прикосновением к пиктограмме, с её последующим "тиснением".

- "Пользовательские настройки" включают в себя:
- 1. Установку требуемой температуры.
- 2. Установку длительности сеанса.
- 3. Установку времени отложенного запуска перед началом сеанса.
- 4. Настройку яркости дисплея.
- 5. Включения / выключение звукового оповещения прикосновения в тачскрину.
- 6. Пиктограмма перехода на "Главную страницу".
- 7. Пиктограмма перехода на страницу "Пользовательские настройки" (с тиснением).
- 8. Пиктограмма перехода на "Информационную страницу".

Изменение параметров - прикосновением к стрелкам больше или меньше Вкл. /выкл. звукового оповещения прикосновением к пикт.

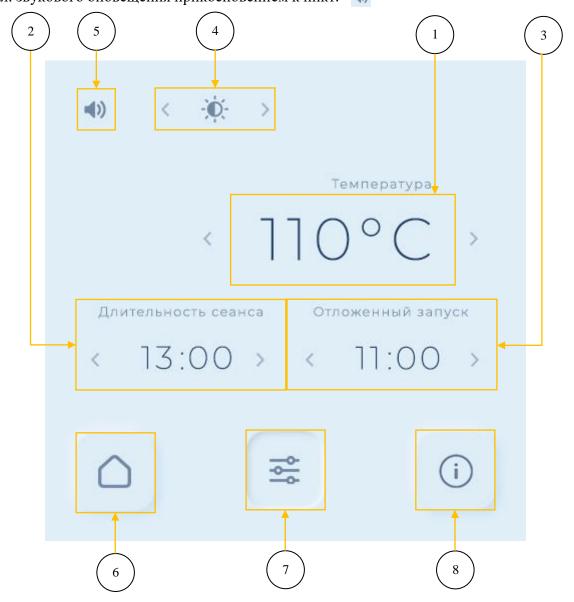


Рис. 41.: Взаимное расположение элементов интерфейса страницы "пользовательские настройки".

Переход на "Информационную" страницу осуществляется прикосновением к пиктограмме последующим "тиснением". (Рис. 42.: Взаимное расположение элементов интерфейса "информационной" страницы.)

На "Информационной" вкладке отображается:

- 1. Общее время наработки ПУ (количество часов наработки ПУ).
- 2. Время наработки ТЭНов.
- 3. Время наработки сеанса.
- 4. Текущая версия ПО дисплея.
- 5. Текущая версия ПО контроллера.
- 6. Счётчик замен ТЭНов (при замене ТЭНов есть возможность обнулить время наработки ТЭНов).
- 7. Переход на страницу дополнительных настроек через пароль.
- 8. Пиктограмма перехода на "Информационную страницу" (с тиснением).
- 9. Пиктограмма перехода на страницу "Пользовательские настройки" (с тиснением).
- 10. Пиктограмма перехода на "Главную страницу".
- 11. Ссылка на сайт производителя: https://karina.market/.

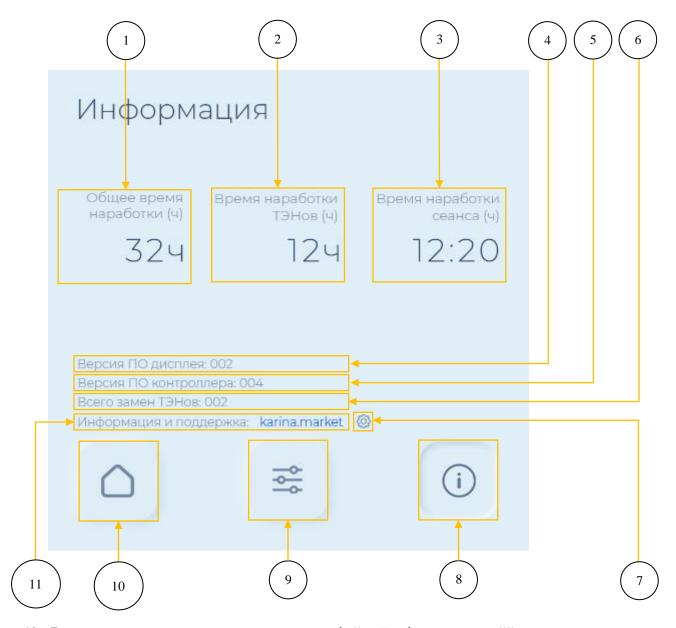


Рис. 42.: Взаимное расположение элементов интерфейса "информационной" страницы.

Дополнительные настройки.

В работе устройства предусмотрены дополнительные настройки, находящиеся под паролями. Пароль вводится на отдельной странице, переход на которую осуществляется прикосновением к пиктограмме (Вкладка "Информация") (Рис. 43.: Взаимное расположение элементов интерфейса страницы "ввод пароля".). Пароли для перехода представлены в Табл. 3.

Вкладка содержит:

- 1. Пиктограмму возврата в предыдущее меню.
- 2. Пиктограмму удаления введённого значения.
- 3. Цифровую клавиатура.
- 4. Пиктограмма ввода набранного значения.
- 5. Поле отображаемых значений.

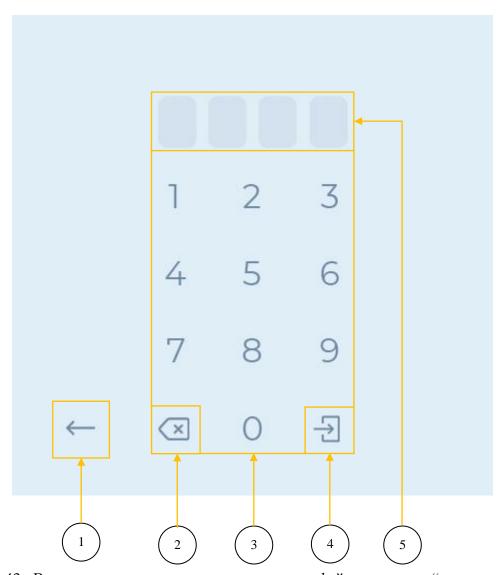


Рис. 43.: Взаимное расположение элементов интерфейса страницы "ввод пароля".

Таблица 3. Пароли перехода в подменю дополнительных настроек:

Код:	Подменю:
3337-₹	Настройка температурного гистерезиса
4893된	Сброс счётчика наработки ТЭНов.

Таблица 4. "Значения настраиваемых параметров по умолчанию".

Гистерезис температуры, °С	3
----------------------------	---

Настройка температурного гистерезиса.

Для поддержания заданной температуры в парном помещении ПО ПУ "SENSE LITE" предоставляет возможность настройки нижнего значения температурного гистерезиса*, (Рис. 44.: Взаимное расположение элементов интерфейса страницы "настройка гистерезиса"), при котором будет происходить включение электрокаменки в "рабочем" режиме. При этом верхний порог определяется значением температуры, установленным во вкладке "пользовательских" настроек до начала работы. Изменение значений возможно в диапазоне от 3 до 10°С и происходит за счёт прикосновения к пиктограммам "меньше"

и "больше"
соответственно. Шаг изменения - 1 ед. измерения. Сохранение значений происходит автоматически, повторная настройка после перезапуска устройства не требуется. Пиктограммы других вкладок позволяют совершить быстрый переход в любую часть интерфейса по желанию.

Вкладка содержит:

- 1. Пиктограмма перехода на "Главную" вкладку.
- 2. Пиктограмма перехода на вкладку "Пользовательских" настроек.
- 3. Пиктограмма перехода на "Информационную" вкладку.
- 4. Поле настройки "Гистерезиса нижнего порога температуры"

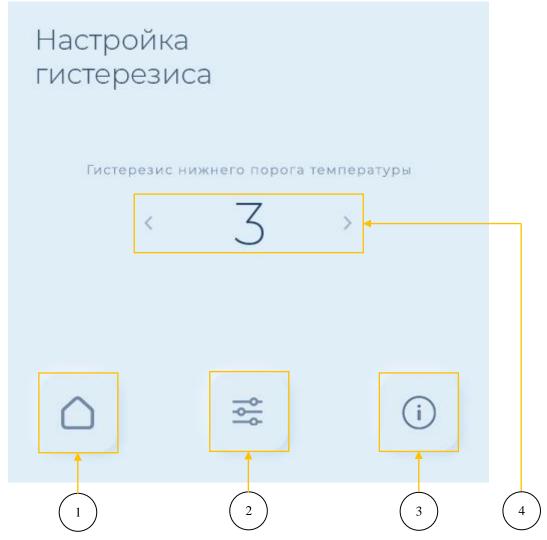


Рис. 44.: Взаимное расположение элементов интерфейса страницы "настройка гистерезиса"

*Параметр, определяющий работу в заданном диапазоне и используемый для тонкой настройки, позволяющей нивелировать особенности реализации проекта парного помещения (вытяжка, утепление и т.д.), влияющие на динамику тепловых процессов при заданной выделяемой мощности в печи.

Пример настройки температурного гистерезиса и последующей работы ПУ (значения взяты произвольно):

- 1. Пользователь задал значение температуры в парной 60°C, при этом установив гистерезис нижнего порога температуры равным 5.
- 2. Электрокаменка выключится при достижении температуры в парной равной 60 °C.
- 3. Последующее включении электрокаменки произойдёт при температуре 55°C.
- 4. Устройство будет поддерживать температуру в парном помещении в диапазоне от 55°C до 60°C.

Сброс счётчика наработки ТЭНов.

Одной из функций, поддерживаемых ПО ПУ "SENSE LITE", является сброс счётчика наработки ТЭНов. Процедуру необходимо проводить при замене ТЭНов (или ТЭНовой сборки печи в случае ТМ KARINA Clio). Необходимость данной процедуры заключается в контроле наработки ТЭНов до их отказа и дальнейшем предоставлении сервиса по ремонту оборудования (гарантийном и постгарантийном обслуживании).

Процедура сброса: при переходе на страницу сброса времени наработки ТЭНов нажать "ОК". Сохранение значений происходит автоматически. Отображения информации о произведённом сбросе можно увидеть на "информационной" вкладке (всего замен ТЭНов).

Пиктограммы других вкладок позволяют совершить быстрый переход в любую часть интерфейса по желанию. (Рис. 45.: Взаимное расположение элементов интерфейса страницы "Сброса счётчика наработки ТЭНов").

Вкладка содержит:

- 1. Пиктограмма перехода на "Главную" вкладку.
- 2. Пиктограмма перехода на вкладку "Пользовательских" настроек.
- 3. Пиктограмма перехода на "Информационную" вкладку.
- 4. Поле подтверждения сброса счётчика наработки ТЭНов "ОК".

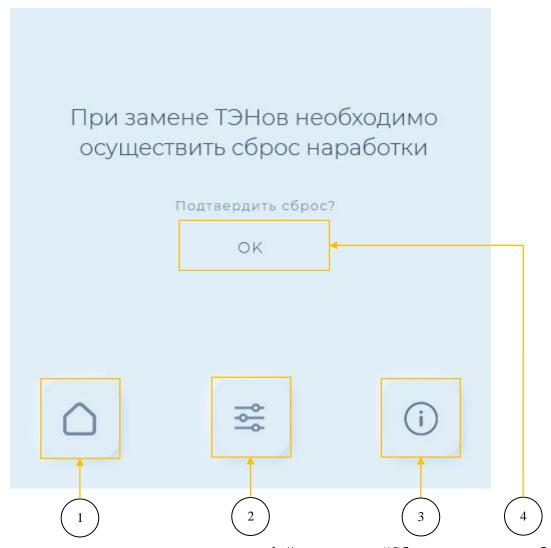


Рис. 45.: Взаимное расположение элементов интерфейса страницы "Сброса счётчика наработки ТЭНов".

6.3. Отложенный запуск

Режим работы устройства, предназначенный для обратного отсчёта времени, заданного пользователем, и последующего автоматического перехода в "рабочий" режим с заранее настроенным значением температуры.

Процедура настройки и включения устройства в режиме отложенного запуска:

1. Произвести начальные настройки времени сеанса, времени отложенного старта, требуемой температуры в парном помещении на странице "пользовательские настройки". (Рис. 46:. Взаимное расположение элементов интерфейса страницы "пользовательские настройки" во время настройки с уведомлением по ограничению температуры).

При настройке стоит учитывать следующее:

- Время сеанса настраивается в диапазоне от 15 минут до 23 часов;
- Время отложенного старта настраивается в диапазоне от 0 минут до 23 часов (при выборе 0 минут, режим отложенного запуска пропускается);
- Шаг изменения времени (в большую или меньшую сторону) 15 минут (¼ часа);
- Температура настраивается в диапазоне от 10 до 120 °C, при достижении верхнего предела по температуре на дисплей будет выведено соответствующее оповещение в виде дополнительного всплывающего окна;
- Шаг изменения температуры 1 ед.;

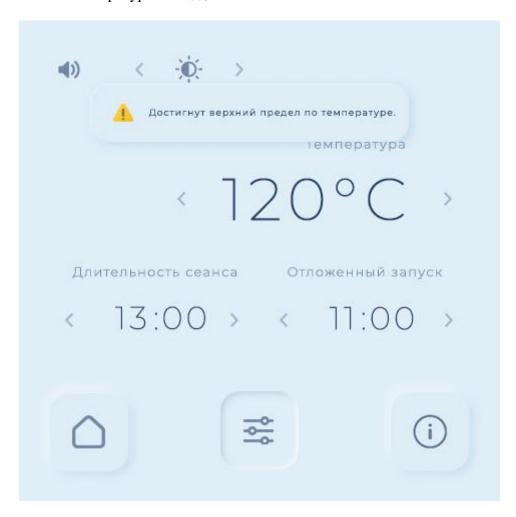


Рис. 46.: Взаимное расположение элементов интерфейса страницы "пользовательские настройки" во время настройки с уведомлением по ограничению температуры.

2. Перейти на "заглавную" вкладку с отображением текущей температуры в парном помещении, а также настроенного времени отложенного старта и времени сеанса. Единоразовым прикосновением к пиктограмме переключения режимов перевести устройство в режим отложенного запуска. (Рис. 47.: Взаимное расположение элементов интерфейса "Главной" страницы в режиме отложенного запуска.)

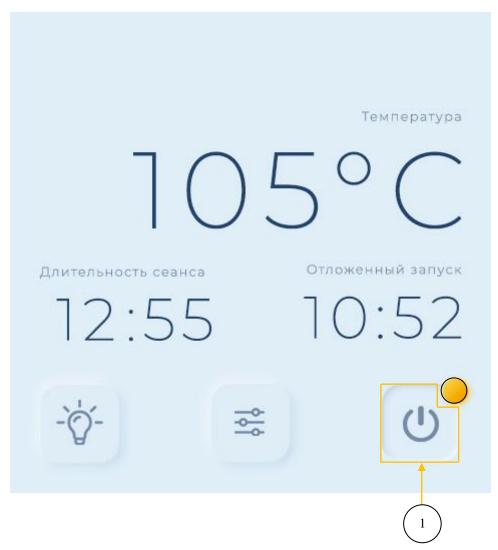


Рис. 47.: Взаимное расположение элементов интерфейса "Главной" страницы в режиме отложенного запуска.

При этом переход в режим "отложенного запуска" приводит к следующему:

- 1. На пиктограмме переключения режимов отобразится круглый сигнализирующий индикатор янтарного цвета, оповещающий о действующем режиме отложенного запуска.
 - 2. Таймер отложенного запуска начнёт обратный отсчёт, пока не достигнет нулевого значения.
- 3. При достижении нулевого значения таймером отложенного запуска, устройство перейдёт в "рабочий" режим.

6.4. Рабочий режим

Режим работы устройства, предназначенный для нагрева парного помещения в течении времени, заданного пользователем в автоматическом режиме.

Процедура перехода устройства в "рабочий" режим (возможен один из перечисленных вариантов):

- 1. Автоматический переход при истечении времени отложенного запуска.
- 2. Автоматический переход при выставлении времени "отложенного запуска" равным нулю. Режим "отложенного запуска" игнорируется. Устройство сразу переходит в "рабочий" режим.
- 3. Принудительный перевод в "рабочий" режим из режима "отложенного запуска" происходит при повторном нажатии на пиктограмму переключения режимов.

(Рис. 48.: Взаимное расположение элементов интерфейса "Главной" страницы в "рабочем" режиме.).

При этом любой из вариантов перехода в "рабочий" режим приводит к следующему:

- 1. На пиктограмме переключения режимов круглый сигнализирующий индикатор янтарного цвета, оповещающий о действующем режиме "отложенного запуска", заменится на индикатор зелёного цвета, оповещающий о действующем "рабочем" режиме.
- 2. Таймер отложенного запуска обнулится.
- 3. Таймер длительности сеанса начнёт вести обратный отсчёт до нулевого значения.

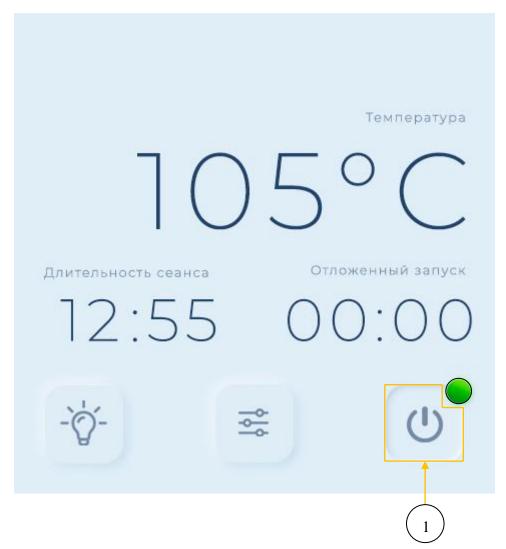


Рис. 48.: Взаимное расположение элементов интерфейса "Главной" страницы в "рабочем" режиме.

Завершение рабочего режима возможно в двух случаях:

- 1. Автоматическое завершение работы и переход в режим "ожидания" при истечении времени таймера длительности сеанса.
- 2. Принудительное завершение сеанса единичным прикосновение к пиктограмме переключения

режимов. При этом сигнализирующий индикатор зелёного цвета исчезает, а устройство переходит в режим ожидания.

6.5. Аварийные режимы

Режим работы, предназначенный для перевода устройства в "режим ожидания" при возникновении одной из следующих неполадок:

1. Неисправность датчика температуры. Заключается в потери связи платы управления с датчиком на период времени более 2-х минут. Сопровождается звуковым сигналом и выводом на экран дисплея оповещения об ошибке (Рис. 49.: Ошибка неисправности датчика температуры.). Продолжается до момента восстановления связи с исправным датчиком, не позволяя управлять устройством. Процесс восстановления происходит в автоматическом режиме при условии исправности и правильного подключения датчика.

Рис. 49.: Ошибка неисправности датчика температуры.

После восстановления связи с датчиком, устройство переходит в "режим ожидания", а для восстановления отображения интерфейса необходимо единичное прикосновение к сенсору дисплея.

2. Режим превышения температуры. Дополнительным ограничение в работе устройства является превышение температуры в парном помещении свыше 125 °C. При достижении этого порога, устройство автоматически обесточивает электропечь до возвращения в заданный предел. Данный механизм не подразумевает никакой индикации.

7. Обслуживание ПУ

7.1. Общие указания и периодичность обслуживания

С периодичностью **не реже, чем раз в полгода,** с момента окончания гарантийного срока проводить осмотр питающих электропроводников, проверять надёжность и производить протяжку контактных соединений.

ВНИМАНИЕ!

Проводить обслуживание изделия необходимо строго обесточенным. Обслуживание электрической части печи необходимо производить электротехническому персоналу, имеющему допуск к работе с электроустановками до 1000В.

7.2. Возможные неисправности и их устранение

Возможная неисправность	Возможная причина	Устранение	
Парильное помещение не нагревается до желаемой температуры	Плохая теплоизоляция парильного помещения	Проверить теплоизоляцию и вентиляцию парильного помещения	
	Не правильное подключение электропитания	Последовательно проверить: - Напряжение питания - Исправность и подключение автоматического выключателя - Исправность и подключение УЗО - Исправность подводящего кабеля и контактов - Исправность ТЭН (проверить целостность, проверить сопротивление	
	Выход из строя реле на плате управления дисплейного модуля	Заменить плату управления	
	Выход из строя магнитного контактора	Заменить магнитный контактор	
Срабатывает автоматический выключатель или УЗО	Автоматический выключатель или УЗО неисправны или меньшего номинала	Проверить автоматический выключатель и УЗО	
	Неисправен ТЭН	Проверить ТЭН	
	Утечки тока на корпус блока мощности	Последовательно проверить все подходящие и отходящие проводники	
Ошибка датчика температуры	Плохой контакт сигнального	Переобжать кабель	
	кабеля с разъёмом платы управления	Заменить плату управления	
	Плохой контакт сигнального	Переобжать кабель	
	кабеля с разъёмом датчика температуры		
Текущая температура, отображаемая на дисплее, не соответствует действительности	Неисправен датчик температуры	Заменить датчик температуры	
Пульт управления не включается	Отсутствует напряжение питания	Проверить питающий провод на наличие фазного напряжение. Проверить контакт нулевого проводника	

Магнитный контактор не включается Отсутствует напряжение питания Проверить питающий провод на наличие фазного напряжение. Проверить контакт нулевого проводника

Таблица 4. Возможные неисправности и их устранение.

7.3. Текущий ремонт

Текущий гарантийный и постгарантийный ремонт изделия производится предприятиемизготовителем ООО "ТЕПЛОМАРКЕТ" по адресу: Московская область, город Мытищи, деревня Грибки, улица Промышленная, дом 3/1.

Контактный телефон сервисной службы: +7 967 020-77-16.

E-mail: service@teplomarket-m.ru

8. Хранение

Срок хранения изделия составляет 1 (один) год с момента приобретения изделия потребителем и истекает вместе с гарантийным периодом.

Условия хранения: Л1. Определяются по ГОСТ 15150-69 для климатического исполнения УХЛ кат.4.2. ПУ должен храниться в упакованном виде, в вертикальном положении, в отапливаемом и вентилируемом помещении при: температуре от +5 °C до +40 °C и среднегодовой влажности не более 60% про 20°C. В помещении хранения не должно быть пыли, грязи, паров кислот и щелочей, вызывающих коррозию изделия.

ВНИМАНИЕ!

При несоблюдении правил хранения как потребителем, так и любой другой организацией, претензии к работе изделия не принимаются, бесплатный ремонт и замена не производится.

9. Транспортировка

Транспортировка ПУ допускается в вертикальном положении в упаковке производителя любым видом транспорта закрытого типа. При транспортировке ПУ в упаковке должен быть закреплен таким образом, чтобы исключить удары и опрокидывания. После транспортирования при отрицательных температурах, прибор необходимо выдержать в упаковке при нормальных климатических условиях не менее 3-х часов.

ВНИМАНИЕ!

При несоблюдении правил транспортировки как потребителем, так и любой другой организацией, претензии к работе изделия не принимаются, бесплатный ремонт и замена не производится

10. Утилизация

При выработке срока службы, пришедшие в негодность из-за неправильной эксплуатации, аварии, ПУ подлежит утилизации. Необходимо произвести демонтаж изделия, после чего произвести его утилизацию в общем порядке.

ПУ не содержит материалов и комплектующих, представляющих опасность для окружающих.

№ EAЭC RU C-RU.HB94.B.00520/25 СЕРИЯ RU № 0564344

В соответствии с ТҮ 3468-001-46465170-2019

Документ может быть изменён без предупреждения.