

федеральное государственное бюджетное учреждение «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» (НИИСФ РААСН)

г.Москва «20» октября 2023 г.

УТВЕРЖДАЮ:

Директор НИИСФ РААСН

И.Л. Шубин

ПРОТОКОЛ АКУСТИЧЕСКИЙ ИСПЫТАНИЙ № 65/42280-1(2023) от 20.10.2023 г.

Основание для проведения испытаний - договор № 42280-1 (2023) от «02» октября 2023 г. между НИИСФ РААСН и ООО «Коска декор»

Наименование продукции - акустические панели ТМ «Коска декор»

Испытация на соответствие - требованиям ГОСТ 23499-2022

Испытание на соответствие - требованиям ГОСТ 23499-2022, ГОСТ 31705-2011

Производитель продукции - ООО «Коска декор», Россия, 192177, г. Санкт-Петербург, Проезд, 3-й Рыбацкий, д.3, литер «Б»

Предъявитель образцов - ООО «Коска декор»

Сведения об испытываемых образцах - акустические панели состоят из основы — акустический войлок толщина 9 мм, плотностью 1600 г/м^2 и декора — рейки из МДФ облицованные экошпоном, размер 25×10 мм, расстояние между рейками 15мм

Дата получения образцов – 05.10.2023 г.

Методика испытаний - ГОСТ 31704 –2011 «Материалы звукопоглощающие. Метод измерения звукопоглощения в реверберационной камере» (EN ISO 354:2003, MOD)

Дата испытаний – 10 октября 2023 г.

Условия испытаний:

площадь образцов $-10,8 \text{ м}^2$;

объем реверберационной камеры - 188 м³;

площадь поверхностей камеры - 203 м²;

форма камеры – трапецеидальная с непараллельными стенами;

температура воздуха -16°C;

относительная влажность – 57 %;

время реверберации в камере при отсутствии в ней испытуемых образцов на частоте 1000 Гц - 6,70 с;

сигнал --«белый шум» в 1/3 октавных полос.

Результаты испытаний и расчетов приведены в Приложениях 1-3 к протоколу № 65/42280-1(2023) от 20.10.2023 г.

ЗАКЛЮЧЕНИЕ

Сектором «Акустические материалы и конструкции» НИИСФ РААСН были проведены испытания акустических панелей ТМ «Коска декор» по показателю - реверберационный коэффициент звукопоглощения.

Измерения проведены в соответствии с межгосударственным стандартом ГОСТ 31704 —2011 «Материалы звукопоглощающие. Метод измерения звукопоглощения в реверберационной камере» (EN ISO 354:2003, MOD).

Реверберационная камера НИИСФ РААСН объемом 188 м 3 и площадью ограждающих поверхностей 203 м 2 имеет трапецеидальную форму.

Образцы плит общей площадью $10.8~{\rm M}^2$ размещались на жестком основании пола камеры.

В момент проведения измерений температура воздуха в камере составляла 16°С. Время реверберации в камере при отсутствии в ней испытуемых образцов на частоте 1000 Гц составляло 6,70 с.

Для практического применения звукопоглощающие свойства материалов и изделий оценивают одним числом — индексом звукопоглощения $\alpha_{w.}$ В зависимости от полученных значений индекса звукопоглощения материалы и изделия должны быть отнесены к одному из пяти классов.

Процедура определения индекса звукопоглощения α_w производилась согласно п.4.2 ГОСТ 31705-2011 (EN ISO 11654:1997) «Материалы звукопоглощающие, применяемые в зданиях. Оценка звукопоглощения».

Проведенные акустические испытания показали, что испытанные акустические панели ТМ «Коска декор» имеют индекс звукопоглощения α_w =0,25(MH), что соответствует классу звукопоглощения «Е» - средний уровень звукопоглощения, согласно ГОСТ 23499-2022 «Материалы и изделия строительные звукоизоляционные и звукопоглощающие. Общие технические условия» п.4.3.

Однако, согласно п.4.3 ГОСТ 31705-2011, заинтересованным сторонам следует обратить внимание на индикаторы формы частотной характеристики **М** и **H**, означающие высокое звукопоглощение в области средних и высоких частот.

Руководитель сектора «Акустические»


материалы и конструкции»

О.В.Градова

Инженер

А.М.Рогалёв

Приложение 1 к протоколу испытаний №65/42280-1(2023) от 20.10.2023 г.

Частотные характеристики реверберационнных коэффициентов звукопоглощения акустических панелей ТМ «Коска декор», размещенных на жестком основании в 1/3 октавных полосах частот.

Таблица 1

	таолица т
Среднегеометрические	$lpha_{ m s}$
частоты 1/3 октавных полос, Гц	
100	0,02
125	0,03
160	0,03
200	0,03
250	0,06
315	0,09
400	0,13
500	0,20
630	0,31
800	0,47
1000	0,66
1250	0,82
1600	0,90
2000	0,91
2500	0,88
3150	0,83
4000	0,80
5000	0,61

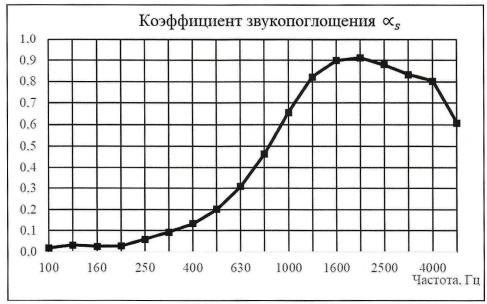


Рис.1 Реверберационный коэффициент звукопогощения α_s в третьоктавных полосах частот

Фактический коэффициенты звукопоглощения в октавных полосах частот.

Таблица 2

Среднеарифметические частоты октавных полос, Гц	Измеренные значения	Сдвинутый нормативный спектр
250	0,05	0,05
500	0,20	0,25
1000	0,65	0,25
2000	0,90	0,25
4000	0,75	0,15

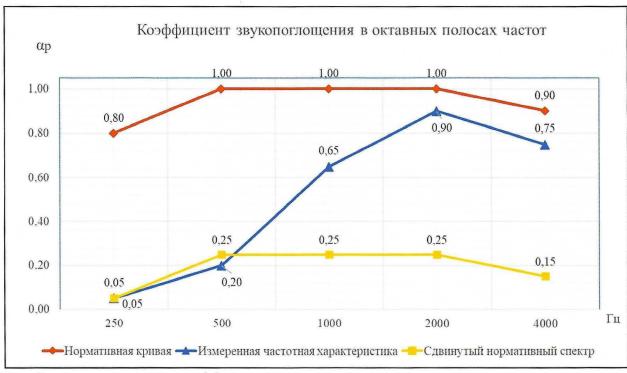


Рис.2 Фактический коэффициент звукопогощения α_p в октавных полосах частот