
Инструкция по эксплуатации

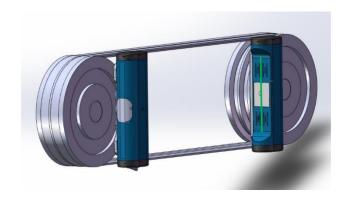
Прибор для выставления соосности шкивов МТD PAT-20

Содержание

Рекс	омендации по технике безопасности	3
1.	Введение	4
2.	Принцип действия	5
3.	Зарядка аккумулятора	7
4.	Установка прибора	8
5.	Включение прибора	<u>c</u>
6.	Проверка на несоосность	. 10
7.	Исправление несоосности	. 10
8.	Устранение неисправностей	. 13
9.	Технические данные	. 13

Рекомендации по безопасности

- Всегда обесточивайте оборудование перед началом работы.
- ◆ Перед началом работы внимательно изучите инструкции по эксплуатации оборудования и строго следуйте им.
- Никогда не смотрите на лазерный луч без защиты органов зрения.
- Никогда не направляйте лазерный луч в глаза другому человеку.
- Вскрытие прибора может привести к опасному воздействию лазерного излучения и аннулированию гарантии.
- Следите за тем, чтобы не прищемить пальцы при установке блоков на шкив.
- Прибор не следует использовать в местах, где существует опасность взрыва.
- Никогда не подвергайте прибор воздействию высокой влажности или непосредственному контакту с водой.
- Выключайте питание, если прибор не используется в течение длительного времени.
- Не держите полностью заряженный аккумулятор подключенным к



1. Введение

Точная центровка оборудования с ременным приводом необходима для снижения износа как шкивов, так и ремней. Это может помочь снизить вибрацию агрегатов, что, в свою очередь, приводит к повышению производительности оборудования. Оптимальная центровка шкивов может помочь сократить незапланированные простои и повысить надежность работы оборудования.

Прибор для выставления соосности шкивов MTD PAT-20 предлагает простой и точный способ выравнивания шкивов.

2. Принцип действия

Прибор для выставления соосности шкивов МТD РАТ-20 состоит из двух блоков. Блок излучателя лазерного луча крепится к боковой стороне одного из шкивов, а блок отражателя - к боковой стороне противоположного шкива. Блок излучателя излучает лазерный луч, который проецируются на блок отражателя. Блок отражателя имеет область приема с центральной контрольной линией. При попадании в область приема, лазерный луч отражается обратно, и в блоке излучателя, в свою очередь, также имеется область контроля отраженного луча, что значительно повышает точность измерений.

Проецируемая лазерная линия позволяет пользователю определить тип несоосности и способы ее устранения. Выравнивание шкивов выполняется путем регулировки (перемещения) опор механизма до тех пор, пока лазерные линии не совпадут с контрольными линиями на обоих блоках.

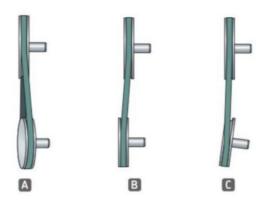


Рис. 1. Различные типы несоосности шкивов

Α	Смещение вертикального угла	
В	Параллельное смещение	
С	Смещение горизонтального угла	

3. Зарядка аккумулятора

Прибор для выставления соосности шкивов MTD PAT-20 питается от перезаряжаемого литиевого аккумулятора.

Если литиевый аккумулятор разряжен:

- Используйте прилагаемый зарядный кабель, который подключается сбоку к блоку передатчика (рис. 2*).
 *тип и внешний вид Разъема для зарядки может отличаться от представленного на Рисунке
- Подключите зарядный кабель к сети посредством разъема USB.
- Выключайте прибор, когда он не используется (рис. 3)

Рис. 2 Разъем для зарядки*

Рис. З Выключатель

Примечание:

Выключите питание, если прибор не будет использоваться в течение длительного периода времени.

^{*}тип и внешний вид Разъема для зарядки может отличаться от представленного на Рисунке

4. Установка прибора

Прибор для выставления соосности шкивов МТD РАТ-20 оснащен мощным встроенным магнитным держателем, позволяющим пользователю монтировать систему практически в любом месте на шкиве.

Устанавливайте блоки на чистых и ровных поверхностях шкива!

- Блок отражателя должен быть установлен на шкиве, который подлежит регулировке.
- Блок излучателя лазерного луча должен быть установлен на неподвижном шкиве.

Пользователь должен определить, какой шкив является подлежащим регулировке, а какой неподвижным.

Шкив для регулировки обычно является самым маленьким и часто монтируется на валу двигателя. В некоторых случаях для достижения желаемой центровки может потребоваться регулировка как шкивов, так и валов.

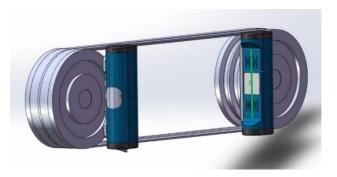


Рис. 4 Блоки излучателя лазерного луча и отражателя установленные на шкивах

5. Включение прибора

Чтобы включить прибор, воспользуйтесь переключателем, расположенным на боковой грани блока излучателя лазерного луча.

6. Проверка на несоосность

Лазерный луч в виде линии на блоке отражателя показывает вертикальное и параллельное смещения. Смещение по горизонтали определяется положением отраженной лазерной линии на блоке излучателе лазерного луча.

Перед выравниванием шкивов важно, чтобы они были правильно установлены на валах и чтобы валы были прямыми. Выверка шкивов с нарушением геометрии может отрицательно сказаться на качестве выравнивания.

7. Исправление несоосности

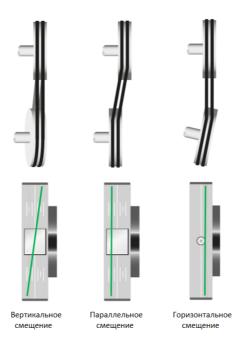


Рис. 5 Сводная информация о несоосности

Шаг 1:

Произведите регулировку по вертикали, выровняв агрегат с помощью калибровочных пластин МТО необходимого размера и толщины, выполненных из нержавеющей стали. Результат такого углового смещения будет отражаться на блоке отражателя.

Рис. 6. Смещение по вертикали до и после регулировки

Шаг 2:

Произведите смещение по горизонтали, отрегулировав агрегат в боковом направлении. Результат регулировки будет отражаться на блоке излучателя лазерного луча.

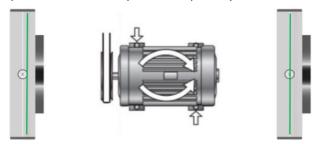


Рис. 7. Смещение по горизонтали до и после регулировки

Шаг 3:

Исправьте параллельную несоосность (смещение), отрегулировав подвижный шкив или агрегат в осевом направлении. Процесс регулировки можно визуально контролировать на блоке отражателя.

Рис. 8. Параллельное смещение до и после регулировки

При выполнении шагов 1, 2 и 3 выравнивание ременных приводов обычно не занимает много времени. Однако каждая регулировка может повлиять и на ранее сделанное выравнивание. Шаги 1, 2 и 3, возможно, потребуется повторять до тех пор, пока система (привод) не будет полностью выровнена. Оптимальное выравнивание достигается, когда лазерные линии на блоках излучателя лазерного луча и отражателя совпадают с целевыми (центральными) линиями.

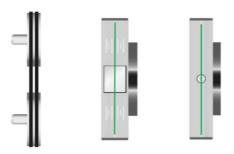


Рис. 9. Оптимально выровненные шкивы

Примечание: При натягивании ремня проверьте выравнивание по горизонтали и при необходимости отрегулируйте。

ПРЕДУПРЕЖДЕНИЕ: Выключите блок передатчика и снимите оба блока ПЕРЕД запуском оборудования.

8. Устранение неполадок

Отсутствует лазерная линия

- Проверьте заряд аккумулятора.
- При повреждении аккумулятора, либо отсутствии реакции на производимую зарядку – необходима диагностика и ремонт.

ВНИМАНИЕ! Не вскрывайте прибор и не пытайтесь произвести ремонт самостоятельно. Любые манипуляции с прибором, произведенные неавторизованным персоналом, являются основанием для отказа по всем гарантийным обязательствам.

 Убедитесь, что окно излучателя лазерного луча не загрязнено. При необходимости протрите его мягкой тканью.

Сбита калибровка

При сбитой калибровке — необходима диагностика и ремонт.

ВНИМАНИЕ! Не вскрывайте прибор и не пытайтесь произвести калибровку самостоятельно. Любые манипуляции с прибором, произведенные неавторизованным персоналом, являются основанием для отказа по всем гарантийным обязательствам.

Состояние после падения либо ударов

Прибор оснащен чувствительными оптическими компонентами. Сильные удары могут повлиять на функционирование и точность устройства. Обращайтесь с ним осторожно и следите за тем, чтобы окно излучателя лазерного луча содержалось в чистоте и без загрязнений.

9. Технические характеристики

Обозначение	MTD PAT-20			
Блок излучателя лазерного луча				
Тип лазера	Лазерный диод с лучом зеленого цвета			
Длина лазерного луча	2 м на 2 м (6.6 фут на 6.6 фут)			
Угловая точность измерений	Лучше, чем 0,02° на расстоянии 2 м (6,6			
этловая точность измерении	фута)			
Смещение точности измерений	Лучше, чем 0,5 мм (1/50 дюйма)			
De 6	от 50 мм до 6 м			
Рабочее расстояние для измерений	от 2 дюймов до 20 футов			
Управление	Выключатель питания			
Материал корпуса	Алюминий с порошковым покрытием			
Размеры излучателя лазерного луча	166 X 50 X 37 MM			
Вес излучателя лазерного луча	420 rp.			

Блок отражателя				
Материал корпуса	Алюминий с порошковым покрытием			
Размеры отражателя	25 X 35 mm			
Размеры блока отражателя	166 X 50 X 37 MM			
Вес блока отражателя	400 гр.			
Дополнения				
Монтаж	При помощи магнита, боковое прикрепление			
Источник питания				
Аккумулятор	Перезаряжаемая литиевая батарея			
Время работы	25 часов непрерывной работы			

Обозначение	MTD PAT-20			
Требования по эксплуатации				
Рабочая температура	От 0 до 40°С (от 32 до 104°F)			
Температура хранения	От -20 до +60°C (ОТ -4 до 140°F)			
Относительная влажность	От 10 до 90%			
Степень защиты ІР	IP 40			
Калибровка	Действительна в течение двух лет			
	1x MTD PAT-20 блок излучателя лазерного луча			
	1x MTD PAT-20 блок отражателя			
Комплект поставки	1x MTD PAT-20 зарядный кабель			
	1х инструкция по эксплуатации			
	1х футляр для хранения и переноски			