

Руководство по эксплуатации

Пирометр

AMO T630

Содержание

- 1. Техника безопасности
- 2. Комплект поставки
- 3. Применение прибора
- 4. Описание прибора
- 5. Работа с прибором
- 6. Дистанция работы с прибором
- 7. Коэффициент излучения
- 8. Технические характеристики
- 9. Уход и обслуживание
- 10. Гарантийные обязательства

ВНИМАНИЕ!

⚠Нарушение или небрежное исполнение рекомендаций Руководства по эксплуатации может повлечь поломку прибора или причинение вреда здоровью пользователя.

1. Техника безопасности

- Перед использованием внимательно осмотрите корпус пирометра. Не работайте с прибором, если корпус поврежден.
- Не оставляйте прибор в зоне воздействия высоких температур или в зоне повышенной влажности.
- В приборе используется лазерное излучение класса II. Строго запрещается направлять лазерный луч себе в глаза, а также на людей и животных. Берегите прибор от детей.
- Не направляйте луч на блестящие и отражающие поверхности (зеркала и т.д.).
- Не давайте прибор неподготовленным лицам.
- Не разбирайте и не ремонтируйте прибор само-

- стоятельно, не пытайтесь изменять его конструкцию. При возникновении технических проблем обращайтесь к дилеру или в сервис.
- Не выбрасывайте прибор и батарею вместе с бытовым мусором, утилизируйте их согласно местным правилам.

2. Комплект поставки

При покупке прибора проверьте комплектацию:

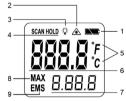
Наименование	Количество
Пирометр АМО Т630	1 шт.
Батарея питания	2 шт.
Руководство по эксплуатации	1 экз.

В случае, если вы обнаружите отсутствие или повреждение какой-либо принадлежности, свяжитесь с продавцом.

3. Применение прибора

Инфракрасные пирометры измеряют температуру поверхности объекта. Детектор прибора измеряет энергию излучаемой, переданной или отражённой волны в инфракрасном спектре. Электронная система прибора преобразует полученные данные в показания температуры, которые отображаются на экране. Сфера применения инфракрасного пирометра АМО Т630 очень широка, этот прибор может использоваться, как в тяжёлой промышленности, так и в бытовом

секторе.


АМО Т630 подойдёт для специалистов в сфере ЖКХ, контролирующих органов по охране труда и пожарной безопасности, предприятий по производству и установке окон или отделочных материалов, строителей и др.

4. Описание прибора

- 1. ЖК-дисплей
- 2. Кнопка Включение/выключение подсветки
- 3. Функциональная кнопка
- 4. Кнопка переключения единиц измерения (°C/°F) / переключение вниз
- 5. Спусковой механизм
- 6. Крышка батарейный отсека
- 7. Лазерный указатель
- 8. Инфракрасный датчик

- 1. Индикатор заряда батареи
- 2. Лазер
- 3. Подсветка
- 4. Индикатор измерения
- 5. Фиксация данных
- 6. Единицы измерения С/F
- 7. Значение измерения
- 8. Индикатор максимума температуры
- Значение максимальной температуры/коэффициент излучения
- 10. Индикатор коэффициента излучения

5. Работа с прибором

- 1. Удерживая прибор за рукоятку, наведите его на измеряемую поверхность.
- Нажмите и удерживайте спусковую кнопку, экран покажет индикатор измерения SCAN.
 Отпустите клавишу, включится индикатор HOLD, результат последнего измерения зафиксируется на LCD-дисплее примерно на 15 секунд. После 15 секунд бездействия прибор отключается автоматически.
- 3. Нажатие кнопки включает и выключает лазерный целеуказатель. При работающем лазере на LCD-дисплее отображается индикатор .
- 4. Нажатие кнопки 🍟 включает и выключает подсветку экрана.

Единицы измерения температуры (°С или °F) переключаются нажатием кнопки «°С/°F».

После работы в условиях высоких температур или резкого повышения температуры, или, наоборот, после проведения измерений в низких температурах, дайте прибору 30 минутный перерыв, чтобы стабилизироваться перед проведением новых измерений.

6. Дистанция работы с прибором

Зона обзора. Необходимо убедиться в том, что размер объекта измерения соответствует требуемому значению. Чем меньше объект, тем ближе следует поднести к нему прибор. Для достижения идеальной точности размер объект должен быть в два раза больше рекомендуемого значения.

При увеличении расстояния (D) размер пятна измерения (S) становится больше. В диаметре пятна сконцентрировано 90% измеренной прибором энергии (температуры).

7. Коэффициент излучения

Данная поправка является одной из основных настроек, отвечающих за точность определения температуры поверхности. Большинство органических материалов, окрашенных или окисленных поверхностей имеют коэффициент излучения, приблизительно равный 0.95 (предварительно установлен в приборе).

Измерение температур блестящих и полированных металлических поверхностей очень сложное и требует точной настройки коэффициента излучения. В этом случае можно выполнить следующие действия:

- произвести замер температуры поверхности эталонным контактным термометром или на обследуемую поверхность нанести чёрную матовую изоленту для бесконтактного измерения;
- в случае замера показаний на поверхности изоленты, дождаться, когда температура изоленты сравняется с температурой поверхности объекта;
- запомнить значения температур (X), измеренных контактным термометром или инфракрасным пирометром с поверхности чёрной матовой изоленты;
- удалить изоленту и повторно навестись в данную область замера инфракрасным пирометром, получим температурный показатель (Y);
- нажмите и удерживайте кнопку (mode), прибор перейдёт в режим изменения коэффициента излучения;
- кнопками (вверх/вниз) изменяем коэффициент излучения на приборе до момента, пока температура (Y) не станет равна температуре (X):
- когда температуры (X) и (Y) станут равны, мы получим истинный коэффициент излучения, для материала в области замера;

 если обследуемая поверхность однородна, то все последующие замеры в любой точке этой поверхности, можно выполнять с установкой полученного коэффициента излучения.

Примечание

Даже при правильном выставлении коэффициента излучения могут возникнуть ошибки показаний при замере температурных показателей. Прежде всего, это связанно с воздействием сторонних тепловых излучателей (нагревающие элементы: лампы, радиаторы и др. или устройства охлаждения: кондиционеры, холодильные установки и т.д.), проектирующих на обследуемую поверхность своё тепловое излучение. Для устранения данного температурного воздействия от сторонних предметов необходимо закрыть излучатели какой либо перегородкой: картон, брезент и т.д.

Таблица коэффициентов излучения

Материал	Темпера- тура материала (°C)	Коэффи- цент излучения (ε)
Лёд	0	0.97
Краска, чёрная (матовая)	80	0.97
Бумага	20	0.97
Стекло	90	0.94
Резина, твёрдая	23	0.94
Дерево	70	0.94
Кирпичная кладка	40	0.93
Бетон	25	0.93
Фарфор	20	0.92
Гипс	20	0.90

Резина, мягкая	23	0.89
Хлопок	20	0.77
Гранит	20	0.45
Свинец, окисленный	40	0.43
Железо, полированное	20	0.24
Алюминий, окисленный	93	0.20
Хром	40	0.08
Свинец, полированный	40	0.06
Медь, полированная	40	0.03
Алюминий, не окисленный	25	0.02

8. Технические характеристики

Основные технические характеристики

Наименование харак- теристики	Значение
Диапазон измерения температуры, °С	от -50 до +550
Пределы допускаемой абсолютной погрешности измерений температуры	±2 (в диапазоне св. -50°C до +100°C) ±2% (от измеряемой величины) (в диапа- зоне св. +100°C до +550°C)
Разрешающая способность по температуре (цена единцы младшего разряда), °С	0,1

Коэффициент излучения	от 0,1 до 1,0
Время установления рабочего режима	0,5
Показатель визирования	1:12
Спектральный диапазон, мкм	От 8 до 14
Автоматическое выключение питания	примерно через 15 сек бездействия
Лазерный целеуказатель	Одноточечный
Напряжение питания, В	3
Габаритные размеры (Длина х Ширина х Высота), мм	154x72x43
Вес, г	120

9. Уход и обслуживание

Очистка прибора:

- не используйте абразивные чистящие средства и растворители;
- протрите корпус влажной тряпкой (мыльным раствором);
- осторожно протрите линзу тампоном, смоченным в воде или медицинском спирте.
 Замена элемента питания:
- если элемент питания разряжен, на ЖК-экране появится индикатор в этом случае необходимо установить новые 2 батареи ААА, 1,5 В;
- открыть крышку батарейного отсека, извлечь батарею из прибора и установить новые 2 батареи ААА, 1,5 В, закрыть крышку батарейного отсека.

10. Гарантийные обязательства

- гарантийный срок составляет 12 месяцев;
- серийный номер обозначен на корпусе прибора;
- дата производства обозначена первыми 4-мя цифрами серийного номера: первая пара цифр - год, вторая пара цифр - месяц;
- неисправности прибора, возникшие в процессе эксплуатации в течение всего гарантийного срока, будут устранены сервисным центром компанииАМО;
- заключение о гарантийном ремонте может быть сделано только после диагностики прибора в сервисном центре компании АМО.

Гарантия не распространяется:

- на батареи, идущие в комплекте с прибором;
- на приборы с механическими повреждениями, вызванными неправильной эксплуатацией или применением некачественных компонентов третьих фирм;
- на приборы с повреждениями компонентов или узлов вследствие попадания на них грязи, песка, жидкостей и т.д.;
- на части, подверженные естественному износу.

Все споры, возникающие в процессе исполнения гарантийных обязательств, разрешаются в соответствии с действующим законодательством РФ.

amo-tools.com