SANTEHGAZ PRO

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

БОЙЛЕРЫ КОСВЕННОГО НАГРЕВА
И ЕМКОСТЬ ИЗ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ
С ВНУТРЕННИМ ЭМАЛИРОВАННЫМ ПОКРЫТИЕМ
С ВОЗМОЖНОСТЬЮ ПОДКЛЮЧЕНИЯ
ЭЛЕКТРИЧЕСКОГО ТЭНА

Cepuя Enamel: SERBF, SERBFD, SERBE, SERBFL

www.market.santehgaz.com www.santehgaz.com

СОДЕРЖАНИЕ

1. Оощие данные	2
2. Основные технические характеристики	3
3. Установка и подключение	7
3.1. Предупреждения	7
3.2. Место установки	7
3.3. Подключение к системе холодного водоснабжения	8
3.4. Подключение к системе отопления	9
3.5. Подключение линии рециркуляции	9
3.6. Подключение аксессуаров	9
4. Подключение к электросети	10
5. Ввод в эксплуатацию	10
5.1. Подключение контура ГВС	11
5.2. Заполнение теплоносителем контура отопления	11
5.3. Проверка перед запуском	11
6. Техническое обслуживание	11
6.1. Перечень работ при проведении техобслуживания	11
6.2. Слив воды с БКН в канализацию	12
6.3. Очистка БКН от накипи	12
6.4. Обслуживание магниевого анода	13
7. Транспортировка и хранение	13
8. Гарантия производителя	14
9. Гарантийный талон	15

1. ОБЩИЕ ДАННЫЕ

Бойлеры косвенного нагрева RISPA (в дальнейшем БКН), предназначены для нагрева и хранения санитарной воды, используемой для хозяйственных нужд в бытовых (жилых) и коммерческих помещениях, имеющих магистраль холодного водоснабжения, с давлением не более 6 Ваг, и поддержания заданной температуры горячей воды при работе с различными источниками тепла.

БКН представляет собой герметичную емкость выполненную из низкоуглеродистой стали с внутренним эмалированным покрытием, способную работать под избыточным внутренним давлением. Основной нагрев воды в БКН выполняется через трубчатый теплообменник, установленный внутри бака, при помощи которого осуществляется передача тепла от теплоносителя нагреваемой воде. Теплообменник выполнен низкоуглеродистой стали с наружным эмалированным покрытием. Внутренняя поверхность бака может иметь незначительные различия в оттенке эмали. Это является нормой производства и никак не отражается на долговечности или эффективности работы бойлера.

Отличительными особенностями бойлеров косвенного нагрева RISPA являются:

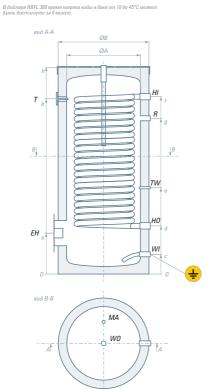
- Внутри бака бойлера установлен один или два, в зависимости от модели, теплообменника.
- Теплообменник выполнен из холоднокатаной трубы, с наружным диаметром 32 мм, толщиной стенки 2 мм.
- Модели БКН с одним теплообменником в качестве основного поставщика теплоносителя используют котел отопления.
- Модели БКН с двумя теплообменниками чаще всего используются для подключения дополнительного резервного источника тепловой энергии (солнечного коллектора, теплового насоса, электрического котла и т.д.)
- Конструкция теплообменников гарантирует высокую производительность оборудования и быстрый нагрев воды системы ГВС, отвечающей всем санитарным нормам.
- Для дополнительной защиты внутреннего бака и сварных швов от электрохимической коррозии в конструкции бойлера предусмотрен магниевый анод.
- Магниевый анод устанавливается в верхней или нижней части бака в зависимости от модели (см в тех. Таблицах нужной модели) и имеет стандартный присоединительный размер 1". Магниевый анод работает по принципу жертвенной защиты: он принимает на себя агрессивное воздействие среды, тем самым снижая риск коррозии металла бака, особенно в зонах сварки. Важно понимать, что анод не является абсолютной защитой, но значительно снижает скорость коррозионных процессов. Срок службы магниевого анода зависит от интенсивности использования и от используемой воды.

Необходимо проводить инспекцию магниевого анода не реже одного раза в 6 месяцев для его замены. В случае коммерческого использования, замену магниевого анода необходимо производить не реже 1-го раза в 3 месяца.

При износе анода более чем на 2/3 от первоначального объёма необходима его своевременная замена. Допускается установка только оригинальных анодов TM RISPA.

Факт замены должен быть подтверждён чеком и отметкой в паспорте изделия.

- Конструкция БКН предусматривает возможность установки электро-ТЭНа диаметром 1 ½″, который служит для дополнительного нагрева санитарной воды как совместно с теплоносителем, так и самостоятельно в случаях невозможности нагрева воды от теплоносителя.
- Теплоизоляция разборная секционная изоляция выполнена из пенополиуретана толщиной до 60 мм, обеспечивающая минимальные потери тепла.
- Штуцер рециркуляции предназначен для подключения контура рециркуляции. Рециркуляция предназначена для обеспечения одинаковой температуры воды в баке и контуре ГВС, а так же для сохранения температуры горячей воды перед точками потребления.
- Термометр позволяет контролировать температуру горячей воды в бойлере.
- Термокарман для погружного датчика температуры, позволяет подключить блок автоматики для контроля нагрева воды в емкости. Ревизионный люк позволяет осуществлять техническое обслуживание и чистку бойлера. Для стабильной и долговечной работы оборудования требуется ежегодное техническое обслуживание. В тех местах, где жесткость воды выше среднего, рекомендуется ежегодно удалять накипь из оборудования. Это возможно сделать через ревизионный люк, не производя демонтаж БКН.


Запрещается эксплуатировать бойлер, если предохранительный клапан не был установлен на бойлер или был установлен с нарушениями требований производителя, или на момент эксплуатации был не исправен!

Модель		SERBF-150	SERBF-200	SERBF-300
Вместимость (л)		150	200	300
Мощность теплообменника S1 (кВт)*		30	30	40
Производительность горячей воды при 45°С (л/ч)*		818	818	1000
Площадь теплообменника S1 (м2)		1	1	1,3
Вместимость теплообменника S1 (л)		8	8	10
Время нагрева воды в бойлере теплообменником S1 10-45°C/10-60°C (мин)*		11/20	18/31	18/32
Макс. температура бака (°C) / давление бака (bar)		85/6	85/6	85/6
Макс. температура в теплообменнике (°C) / давление в теплообменнике (bar)		95/6	95/6	95/6
Материал бака	низкоуглеро	одистая сталь с вн	утренним эмалі	рованным покрыти
Материал теплообменника	низкоуглер	одистая сталь с н	аружным эмали	рованным покрытие
Толщина стенки бака (мм)		2	2	2
Толщина стенки теплообменника (мм)		2	2	2
Толщина изоляции (мм)		50	50	50
Материал защитного кожуха		Пластик	Пластик	Пластик
Диаметр ревизионного люка (мм)		114	114	114
Вес нетто/брутто (кг)		54,2/59,2	61,3/66,7	83,3/89,1
"Мощность, время нагрева и производительность		Размеры	(MM)	
указана при параметрах подачи тепоносителя температурой 80°C и расходом 2.5 м3/час с температурой нагрева воды в баке от 10 до 45°C	h	996	1255	1765
	а	250	250	250
	b	705	965	1490
suð A-A ØB	С	210	210	210
ØA	d	320	310	310
	е	505	495	675
h	f	690	680	860
	g	600	870	1235
т	ØA	500	500	500
' b†	ØB	605	605	605
	Упаковка:	690x690x1065	690x690x1325	690x690x1835
BJ J J J J J J J J J J J J J J J J J J				
В модели SERBF-150 вы	ыход рецир	куляции		
располагается ниже в	хода тепл	оносителя		
HO				
d d				
EH	WI	– вход холодной	воды G1"	HP
	W0	– выход горячей в	воды G 1"	HP
W c	HI	– вход теплонос	ителя G 1"	HP
	H0	– выход теплоно	сителя G 1"	HP
0 +	TW	– термокарман	Ø 14	ММ
	R	– рециркуляция	G 3/-	4" HP
suò B·B	EH	– подключение Т	ЭНа G 1,1	/2" BP
MA	T	– термометр	G 1/.	2" BP
	MA	– магниевый ано	G 1"	BP

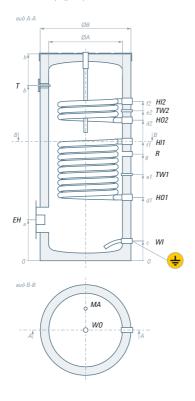
– место подключения заземления

Модель	SERBFL-200	SERBFL-300
Вместимость (л)	200	300
Мощность теплообменника S1 (кВт)*	60	115
Производительность горячей воды при 45°C (л/ч)*	1200	2200
Площадь теплообменника S1 (м2)	2	3,8
Вместимость теплообменника S1 (л)	16	30
Время нагрева воды в бойлере теплообменником S1 10-45°C/10-60°C (мин)*	10/19	8/14
Макс. температура бака (°C) / давление бака (bar)	85/6	85/6
Макс. температура в теплообменнике (°C) / давление в теплообменнике (bar)	95/6	95/6
Материал бака	низкоуглеродистая сталь с внутренним эмалир	оованным покрытием
Материал теплообменника	низкоуглеродистая сталь с наружным эмалир	ованным покрытием
Толщина стенки бака (мм)	2	2
Толщина стенки теплообменника (мм)	2	2
Толщина изоляции(мм)	50	50
Материал защитного кожуха	Пластик	Пластик
Диаметр ревизионного люка (мм)	114	114
Вес нетто/брутто (кг)	77,5/82,9	116,3/122

*Мощность, время нагрева и производительность указана при параметрах подачи теплоносителя температурой 80°С и расходом 2.5 м3/час с температурой нагрева воды в баке от 10 до 45°С

d	310	310
е	495	675
g	870	1235
f	960	1480
ØA	500	500
ØB	605	605
Упаковка	690x690x1325	690x690x1835

Размеры (мм)

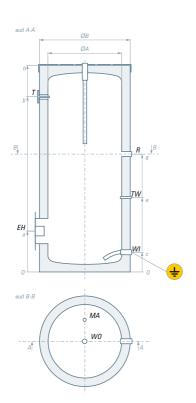

WI	– вход холодной воды	G 1" HP
W0	– выход горячей воды	G 1" HP
HI	– вход теплоносителя	G 1" HP
H0	– выход теплоносителя	G 1" HP
TW	– термокарман	Ø 14 мм
R	– рециркуляция	G 3/4" HP
ЕН	– подключение ТЭНа	G 1,1/2" BP
Τ	– термометр	G 1/2" BP
MA	– магниевый анод	G 1" BP
÷	— место подключения заземления	

Модель	SERBFD-200	SERBFD-300
Вместимость (л)	200	300
Мощность теплообменника S1 (кВт)*	30	40
Мощность теплообменника S2 (кВт)*	15	28
Производительность горячей воды при 45°C (л/ч)*	1090	1636
Площадь теплообменника S1 (м2)	1	1,3
Площадь теплообменника S2 (м2)	0,5	0,9
Вместимость теплообменника S1 (л)	8	10
Вместимость теплообменника S2 (л)	4	7
Время нагрева воды в бойлере с двумя теплообменниками 10-45°C/10-60°C (мин)*	11/20	11/19
Макс. температура бака (°C) / давление бака (bar)	85/6	85/6
Макс. температура в теплообменнике (°C) / давление в теплообменнике (bar)	95/6	95/6
Материал бака	низкоуглеродистая сталь с внутренним эмалир	ованным покрытие
Материал теплообменника	низкоуглеродистая сталь с наружным эмалиро	ованным покрытием
Толщина стенки бака (мм)	2	2
Толщина стенки теплообменников (мм)	2	2
Толщина изоляции(мм)	50	50
Материал защитного кожуха	Пластик	Пластик
Диаметр ревизионного люка (мм)	114	114

*Мощность, время нагрева и производительность указана при параметрах подачи теплоносителя температурой 80°С и расходом 2.5 м3/час с температурой нагрева воды в баке от 10 до 45°С

Вес нетто/брутто (кг)

71,3/76	,8
Размеры (мм)


99,4/105,2

газмеры (мм)					
	h	1255		1765	
	а	250		250	
	b	965		1490	
	С	210		210	
	d1	310		310	
	e1	495		675	
	f1	680		860	
	g	580		1235	
	d2	780		1110	
	e2	870		1360	
	f2	960		1480	ı
9	ØA .	500		500	
9	ØB	605		605	
Упа	ковка	690x690x13	25	690x690x	1835

WI	– вход холодной воды	G 1" HP
W0	– выход горячей воды	G 1" HP
HI1	– вход теплоносителя	G 1" HP
H01	– выход теплоносителя	G 1" HP
HI2	– вход теплоносителя	G 1" HP
H02	– выход теплоносителя	G 1" HP
TW1	– термокарман	Ø 14 mm
TW2	– термокарман	Ø 14 mm
R	– рециркуляция	G 3/4" HP
EH	– подключение ТЭНа	G 1,1/2" BF
T	– термометр	G 1/2" BP
MA	– магниевый анод	G 1" BP
<u>+</u>	— место подключения заземления	

5

Модель	SERBE-150	SERBE-200	SERBE-300
Вместимость (л)	150	200	300
Время нагрева электротеном 2кВт/3кВт 10-45°С (часов)	3/2	4/2,7	6/4
Время нагрева электротеном 3кВт/5кВт 10-45°С (часов)	-	-	-
Максимальная температура бака (°C)	85	85	85
Максимальное давление бака (bar)	6	6	6
Материал бака	низкоуглеродистая сталь с внутр	енним эмалирова	нным покрытием
Толщина стенки бака (мм)	2	2	2
Толщина изоляции (мм)	50	50	50
Материал защитного кожуха	Пластик	Пластик	Пластик
Диаметр ревизионного люка (мм)	114	114	114
Вес нетто/брутто (кг)	37,2/42,4	46,8/52,2	62,4/68,2
	D /	1	

Размеры (мм)					
h	996	1255	1765		
а	250	250	250		
b	705	965	1490		
С	210	210	210		
е	505	495	675		
g	600	870	1235		
ØA	505	500	500		
ØB	605	605	605		
Упаковка	690x690x1065	690x690x1325	690x690x1835		

W0	– выход горячей воды	G 1" HP
R	– рециркуляция	G 3/4" HP
TW	– термокарман	Ø 14 мм
WI	– вход холодной воды	G 1" HP
EH	– подключение ТЭНа	G 1,1/2" BP
Τ	– термометр	G 1/2" BP
MA	– магниевый анод	G 1" BP
	– место подупилиения	

3. УСТАНОВКА И ПОДКЛЮЧЕНИЕ

3.1. Предупреждения

Монтаж и пусконаладочные работы должны выполняться квалифицированными специалистами, имеющими подтверждённую квалификацию (аттестаты, дипломы), дающую право на установку оборудования, работающего под избыточным давлением. Работы должны проводиться в соответствии с настоящим руководством и действующими нормативами.

В случае монтажа неквалифицированными лицами, производитель не несёт гарантийных обязательств и вправе отказать в гарантийном обслуживании. Сведения о проведённых монтажных и пусконаладочных работах должны быть внесены в гарантийный талон с указанием даты, организации-исполнителя и подписи ответственного лица.

Отсутствие данной отметки может являться основанием для отказа в гарантийном обслуживании При подключении дополнительного электрооборудования бойлера (ТЭНа) к источнику электропитания необходимо руководствоваться соответствующими разделами Правил устройства электроустановок. БКН должен быть подключен к заземляющему устройству. Сопротивление, заземляющего устройства должно быть не более 10 Ом.

!!! В случае отсутствия заземления - запрещается осуществлять установку и эксплуатацию изделия независимо от того планируется ли использование электрического ТЭНа или нет.

!!! Категорически запрещается использовать для заземления металлоконструкции водопроводных, отопительных и газовых сетей, а так же металлоконструкции зданий.

!!! Запрещается эксплуатация бойлера при отсутствии стационарного контура заземления, отвечающего требованиям ГОСТ Р 58882-2020 и ПУЭ.

!!! Эксплуатировать бойлер с водой из колодцев и скважин без дополнительной водоподготовки не допускается.

!!! Требования к качеству воды:

Вода, используемая в бойлере, должна соответствовать требованиям, предъявляемым к питьевой воде, в соответствии с СанПиН 1.2.3685–21 (Минздрав России).

Для предотвращения коррозии и продления срока службы бака из низкоуглеродистый стали с эмалированным покрытием рекомендуется соблюдать следующие параметры:

Показатель	Рекомендуемое значение
Хлориды (CI), мг/л	≤ 150
Общая жёсткость, мг-экв/л	≤ 6
рН	6,5-8
Электропроводность при 25	5°C мкСм/см≤ 450

 \triangle Отклонения могут привести к питиннговой электрохимической коррозии и анодному износу, что не подпадает под гарантию.

3.2. Место установки.

БКН должен устанавливаться во внутреннем помещении здания, защищенном от замерзания и воздействия атмосферных осадков.

Требования к помещению, в котором устанавливается оборудование: оно должно быть сухим (влажность воздуха не более 80%) и защищенным от воздействия отрицательных температур (температура воздуха от + 2 до + 45 °C), замерзание бойлера не допустимо. Должен быть обеспечен достаточный доступ к бойлеру со стороны монтажа контуров отопления и водоснабжения, также необходимо обеспечить достаточно пространства для возможности доступа к технологическим устройствам (ревизионному люку, ТЭНу, термометру, датчикам). Для удобства обслуживания бойлера косвенного нагрева, должен быть обеспечен достаточный доступ со всех сторон.

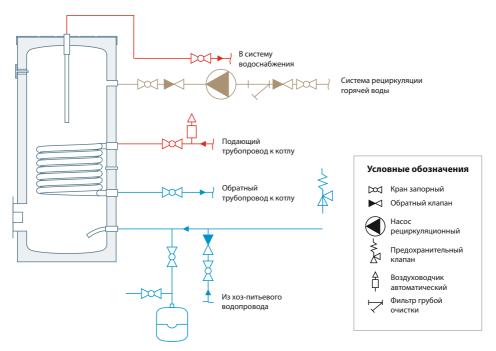
Рекомендуемые расстояния от бойлера до ограждающих конструкций должны быть не менее 200 мм для облегчения доступа при проведении технического обслуживания в случае необходимости. Для замены магниевого анода, сверху БКН необходимо оставить свободное место не менее 700 мм., для свободного демонтажа и установки магниевого анода.

3.3. Подключение к системе холодного водоснабжения

При подключении БКН к системе холодного водоснабжения - давление воды на вводе в систему ГВС не должно превышать 6 бар, в ином случае необходимо установить редуктор давления.

На вход холодной воды рекомендуется установить фильтр грубой очистки (для предотвращения попадания грязи и ржавчины в бойлер и корректной работы предохранительного клапана).

!!! ВНИМАНИЕ. Обязательная установка предохранительного сбросного клапана на 6 bar в соответствии с требованием производителя. Предохранительный сбросной клапан должен быть установлен на магистрали входа холодной воды в БКН в непосредственной близости от патрубка входа холодной воды и предохранительным клапаном, не должно быть никакой запорной арматуры (кранов, вентилей, обратных клапанов, редукторов давления, ограничительных шайб и др.).


Обязательная установка расширительного бака на ввод холодного водоснабжения. Объём расширительного бака должен составлять не менее 10% от объёма бойлера косвенного нагрева.

!!! При подключении к сети холодного водоснабжения соблюдайте порядок монтажа элементов запорной арматуры рис. 1, от этого зависит правильная работа оборудования и сохранения гарантии на оборудование.

Качество воды должно соответствовать СанПиН 1.2.3685-21 Минздрав России Москва.

!!! Нарушение данного требования может стать причиной интенсивного образования накипи на внутренней поверхности бака и теплообменников, повышенному износу магниевого анода и, в крайнем случае, поломке бойлера.

Схема подключения (рис 1):

3.4. Подключение к системе отопления

Бойлер косвенного нагрева подключается к системе отопления, давление в которой не должно превышать 6 Bar.

Перед монтажом необходимо промыть систему отопления для удаления загрязнений.

В качестве теплоносителя может применятся вода или теплоноситель на основе <u>пищевого полипропилен</u> гликоля.

!!! Применение теплоносителя на основе этиленгликоля – ЗАПРЕШЕНО!

Если в качестве теплоносителя используется вода, необходимо чтобы вода соответствовала следующим требованиям: Значение pH воды:

оптимальные 8,3 - 9,0 (допустимые 8,0 - 9,5)

Содержание кислорода в воде, не более 20 мкг/дм³

Максимально допустимая температура воды в бойлере не должна превышать 85 °C.

!!! Подключение теплообменника БКН к открытым системам отопления ЗАПРЕЩЕНО!

!!! Максимально допустимая температура теплоносителя, подаваемого в теплообменник не должна превышать 95 °C.

!!! Максимально допустимое давление теплоносителя, подаваемого в теплообменник не должна превышать 6 бар.

Схема подключения смотри Рис. 1

3.5. Подключение линии рециркуляции

В БКН предусмотрена возможность организации контура рециркуляции горячего водоснабжения, что позволяет существенно повысить комфортность пользования водозаборными точками за счет минимизации времени ожидания горячей воды, особенно, если система ГВС имеет большие разветвления по магистрали или удаленные точки. При организации данных устройств необходимо уделить большое внимание их теплоизоляции, во избежание больших потерь на трубопроводе. Схема подключения см. Рис. 1

3.6. Установка аксессуаров

Термостат — это настроенное и испытанное устройство, которое предназначено для поддержания установленной температуры бойлера при помощи управления циркуляционным насосом или трехходовым клапаном с сервоприводом. Его задача поддерживать температуру воды в диапазоне заданных значений. Для установки датчиков бойлера необходимо вставить датчик до упора в термокарман.

4. ПОДКЛЮЧЕНИЕ К ЭЛЕКТРОСЕТИ

ВНИМАНИЕ!!! Включение электрического ТЭНа с пустым баком приводит к поломке нагревательного элемента и поражению электрическим током.

ВНИМАНИЕ!!! Водонагреватель должен быть заземлен для обеспечения его безопасной работы, в независимости от наличия ТЭНа. Контакты в месте подключения заземления должны быть чистыми и надежными. Эксплуатировать бойлер без защитного заземления запрещается! Заземляющий провод необходимо подсоединять к разъему с обозначением заземления!

Перед подключением ТЭНа к электрической сети убедитесь, что её параметры соответствуют, тем, которые рассчитаны для данного водонагревателя!

Если поврежден кабель питания электрического ТЭНа, он должен быть заменен производителем или авторизованной сервисной службой или другим квалифицированным специалистом во избежание серьезных травм. После установки БКН электрическая вилка ТЭНа должна находиться в доступном месте. При использовании электрического ТЭНа запрещено применять переносные розетки. Водонагреватель необходимо подключать через устройство защитного отключения (УЗО) с номинальным разностным током срабатывания не более 30 мА.

Электрический ТЭН в комплектацию БКН НЕ ВХОДИТ,

- Все работы по подключению электрического оборудования бойлера (в том числе ТЭНа) должны выполняться только специалистами с подтверждённой квалификацией и допуском к электромонтажным работам, а также знанием требований к безопасности в системах отопления и горячего водоснабжения.
- Подключение к электросети должно осуществляться с соблюдением положений Правил устройства электроустановок (ПУЭ). Рекомендуется установка устройств защитного отключения (УЗО) для предотвращения поражения электрическим током при возникновении утечек.
- Бойлер должен быть надёжно заземлён. На корпусе предусмотрен специальный контактный элемент для подключения заземляющего проводника.
- Сопротивление заземляющего контура должно быть не более 10 Ом.
- Рекомендуется поручать проверку параметров заземляющего контура организациям, имеющим соответствующую квалификацию и допуски в области электробезопасности.

По результатам измерений должен быть оформлен протокол или акт, подтверждающий соответствие системы требованиям Правил устройства электроустановок (ПУЭ) и замер сопротивления контура заземления Заказчик обеспечивает доступ к заземляющему устройству и, при необходимости, подготовку места для подключения.

5. ВВОД В ЭКСПЛУАТАЦИЮ

ВНИМАНИЕ!!! Установку БКН и ввод в эксплуатацию, рекомендуется доверять только квалифицированному специалисту! Убедитесь, что параметры всех подключенных сетей соответствуют требованиям технического паспорта! Запрещается вводить оборудование в эксплуатацию, если не выполнены все требования производителя, прописанные в техническом паспорте!

Заполнение бойлера следует производить строго в следующей последовательности:

5.1. Заполнение водой контура ГВС (бака)

При заполнении бака системы ГВС водой нужно открыть ближайший кран разбора горячего водоснабжения (остальные краны должны быть закрыты). Далее необходимо открыть запорное устройство подачи холодной воды в бойлер для его заполнения. Внутренний бак необходимо заполнять до момента, когда из крана горячего водоснабжения польётся вода равномерной струей без воздушных пузырьков и посторонних звуков в трубах. После чего следует закрыть разборный кран. В целях промывки бака перед первым использованием или при длительных простоях без водоразбора, необходимо выпустить из разборного крана большое количество воды (не менее двухкратного объема бойлера).

После промывки и заполнения бойлера до рабочего давления необходимо визуально произвести осмотр присоединений и трубопроводов на возможные протечки. Убедитесь, что предохранительный клапан, установленный на входе холодной воды в неотключаемом положении, срабатывает, воздух внутри бака отсутствует, давление в системе водоснабжения стабилизировалось.

При обнаружении протечки подводящих трубопроводов или из бойлера необходимо прекратить работу водонагревателя и не запускать его, пока не обнаружите причину протечки и не устраните ее. Эксплуатация бойлера допускается только при заполненном контуре горячего водоснабжения и греющего контура теплообменника.

5.2. Заполнение теплоносителем (водой) контура отопления (теплообменника).

После заполнения теплообменника БКН теплоносителем убедитесь, что давление в системе стабилизировалось и не превышает рабочего, аварийные сбросные клапаны в системе теплоснабжения в рабочем состоянии, автоматические воздухоотводчики, расположенные в верхней точке в непосредственной близости от теплообменника бойлера сработали при заполнении системы.

5.3. Проверка перед запуском

- Убедитесь, что предохранительные клапаны (контура ГВС и греющего контура) установлены правильно.
- Убедитесь, что бак заполнен санитарной водой, а теплообменник заполнен теплоносителем.
- Убедитесь, что воздух был корректно удален из обоих контуров.
- Убедитесь, что трубы холодной и горячей воды правильно присоединены к патрубкам горячего водоснабжения БКН и не имеют протечек.

!!! Трубка отвода горячей воды, как и части защитной арматуры, может быть горячей.

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

6.1. Перечень работ при проведении технического обслуживания.

Для обеспечения надежной работы бойлера и обеспечения продолжительного срока службы рекомендуется регулярно проверять текущее состояние оборудования и осуществлять его сервисное обслуживание. Рекомендуется ежегодно проводить работы по проверке и обслуживанию бойлера косвенного нагрева. Обязательным условием является проведение данных работ обученным и компетентным персоналом авторизованного сервисного центра.

Перечень работ:

- Контроль герметичности гидравлических соединений;
- Проверка фильтров грязевиков;
- Проверку состояния теплообменника и внутренней поверхности бака, при необходимости очистку его от загрязнений и отложений накипи внутри (частота чистки зависит от параметров жёсткости воды);
- Проверка давления в расширительном баке системы ГВС (при наличии);
- Проверку целостности теплоизоляционного материала;
- Проверку функционирования предохранительных устройств и аварийных устройств (при их наличии);
- Проверку состояния магниевого анода.

Магниевый анод

Для дополнительной защиты внутреннего бака и сварных швов от электрохимической коррозии в конструкции бойлера установлен магниевый анод.

Анод размещается в верхней или нижней части бака в зависимости от модели (см в тех. Таблицах нужной модели) и имеет стандартный присоединительный размер 1". Он выполняет функцию жертвенного элемента, принимая на себя воздействие агрессивных компонентов воды и тем самым снижая риск коррозии. Важно понимать, что анод не является абсолютной защитой, но существенно продлевает срок службы бака.

Инспекция и замена

Необходимо проводить инспекцию магниевого анода не реже одного раза в 6 месяцев для его замены. В случае коммерческого использования, замену магниевого анода необходимо производить не реже 1-го раза в 3 месяца.

При износе анода более чем на 2/3 от первоначального объёма необходима его своевременная замена. Допускается установка только оригинальных анодов TM RISPA.

Факт замены должен быть подтверждён чеком и отметкой в паспорте изделия.

Внимание: Несвоевременная проверка или замена магниевого анода может привести к ускоренной коррозии и прежде временному выходу из строя бака. Подобные случаи не признаются гарантийными

6.2. Слив воды с БКН в канализацию

Слив воды и теплоносителя из бойлера осуществляется только при остывании до температуры не вызывающих ожога.

В случаях проведения ремонта, технического обслуживания, если БКН не используется в холодное время года и в других случаях, то необходимо слить воду из внутреннего бака бойлера, открыв один или несколько водоразборных кранов и кран слива, установленный при монтаже бойлера в самой нижней точке системы (сливной кран должен находиться ниже уровня бойлера).

Слив воды произведите в канализационный трап. Также необходимо слить теплоноситель из змеевика теплообменника.

6.3. Очистка БКН от накипи

Для стабильной и долговечной работы оборудования требуется ежегодное техническое обслуживание. В тех регионах, где жесткость воды выше среднего, рекомендуется ежегодно удалять накипь из оборудования. Если вода содержит много минералов, внутри бака образуется накипь.

Лля очистки БКН от накипи:

- отключить электропитание бойлера косвенного нагрева, если есть электрический ТЭН;
- дать остыть горячей воде или израсходовать ее через смеситель;
- перекрыть поступление холодной воды в бойлер косвенного нагрева;
- открутить предохранительный клапан или открыть сливной вентиль;
- открыть кран горячей воды для поступления в бак воздуха во избежание его деформации;
- на патрубок подачи холодной воды или на сливной вентиль надеть резиновый шланг. направив второй его конец в канализацию:
- снять пластиковую крышку фланца прочистки, отсоединить провода (при наличии ТЭНа), открутить болты крепления и снять заглушку фланца прочистки;

- очистить при необходимости змеевик от накипи и удалить осадок.
- произвести сборку, заполнить бойлер косвенного нагрева водой и включить питание, в соответствии с пунктом 3.3.

Рекомендуется использовать мягкие материалы для чистки поверхности, применять специальные средства для очистки эмалированных поверхностей.

!!! Запрещается использовать абразивные средства. Применять хлорсодержащие чистящие средства.

6.4. Обслуживание магниевого анода

Необходимо проводить инспекцию магниевого анода не реже одного раза в 6 месяцев для его замены. В случае коммерческого использования, замену магниевого анода необходимо производить не реже 1-го раза в 3 месяца.

При износе анода более чем на 2/3 от первоначального объёма необходима его своевременная замена. Допускается установка только оригинальных анодов TM RISPA.

Факт замены должен быть подтверждён чеком и отметкой в паспорте изделия.

Для проведения ТО и замены магниевого анода необходимо выполнить следующее:

- отключить электропитание бойлера косвенного нагрева, если есть ТЭН;
- дать остыть горячей воде или израсходовать ее через смеситель;
- перекрыть поступление холодной воды в бойлер косвенного нагрева;
- через кран горячей воды сбросить давление в баке до ноля;
- снять верхнюю крышку, вытащить верхнюю плиту изоляции, открутить пробку с магниевым анодом и произвести замену магниевого анода.
- для замены и обслуживания магниевого анода В БКН сливать воду из бака нет необходимости.

7. ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

БКН может перевозиться и храниться в сухой среде, должно быть защищено от воздействия погодных условий. При погрузке и выгрузке необходимо руководствоваться указаниями на таре.

БКН в упаковке производителя могут транспортироваться всеми видами крытого транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта. При транспортировании должны быть исключены любые возможные удары и перемещения упаковок с бойлерами.

!!! Располагать упаковку с бойлером при транспортировке необходимо только вертикально.

8. ГАРАНТИЯ ПРОИЗВОДИТЕЛЯ

Изготовитель гарантирует соответствие продукции требованиям безопасности при условии соблюдения потребителем правил использования, транспортировки, хранения, монтажа и эксплуатации. Гарантийный срок службы составляет 36 месяцев на внутренний бак и теплообменник, с даты продажи потребителю или ввода в эксплуатацию БКН, но не более 72 месяца с даты изготовления. На остальные части всех типов изделия гарантийный срок составляет 12 месяцев с даты приобретения оборудования. Срок гарантии исчисляется с даты продажи бойлера косвенного нагрева пользователю. При отсутствии или исправлении даты продажи и штампа магазина гарантия является недействительной.

Наличие небольших сколов эмали внутри бака, на поверхности фланца и теплообменника не влияет на эксплуатационные характеристики оборудования и не является причиной предъявления претензий по качеству.

Ответственность за соблюдение правил установки и подключения лежит на покупателе (при самостоятельном подключении) либо на монтажной организации, осуществлявшей подключение.

Ремонт, замена составных частей и комплектующих в пределах срока гарантии не продлевают срок гарантии на бойлер косвенного нагрева в целом. Срок гарантии на замененные или отремонтированные комплектующие составляет шесть месяцев.

Гарантия распространяется на все дефекты, возникшие по вине изготовителя.

Запрещается производить демонтаж водонагревателя, вышедшего из строя в период гарантийного срока, до получения официального заключения от уполномоченного производителем лица и может послужить основанием для отказа в гарантийном обслуживании.

Гарантия не распространяется на дефекты, возникшие в случаях:

- отсутствия подключения изделия к контуру заземления, что в свою очередь ведет к электрокоррозии внутреннего бака и теплообменника;
- в случаи установки запорной арматуры между клапаном безопасности и бойлером;
- аварий, вызванных монтажом или эксплуатацией неисправных, или поврежденных клапанов безопасности;
- нарушения паспортных режимов хранения, монтажа, испытания, эксплуатации и обслуживания изделия;
- отсутствие расширительного бака, его неисправности или если его объём меньше 10 % от объёма БКН;
- ненадлежащей транспортировки и погрузочно-разгрузочных работ; наличия следов воздействия веществ, агрессивных к материалам изделия;
- механические повреждения или повреждения, вытекающие из действий атмосферных условий (например, мороз) и действий, вытекающих из-за превышения допустимого рабочего давления, указанного в техническом паспорте:
- наличия повреждений, вызванных пожаром, стихией, форс-мажорными обстоятельствами;
- наличия следов постороннего вмешательства в конструкцию изделия;
- неправильного подключения изделия к водопроводной сети, а также неисправностей (не соответствия рабочим параметрам и безопасности) водопроводной сети и прочих внешних сетей;
- использования бойлера с жидкостями, не соответствующими требованиям настоящего руководства;
- повреждений, вызванных не своевременной заменой магниевого анода или отсутствием в паспорте заметок о его периодических проверках работоспособности и заменах;
- повреждений, являющихся результатом отсутствия периодической чистки бака от накопленных отложений и шлама.

Претензии к качеству товара могут быть предъявлены в течении гарантийного срока. Затраты связанные с демонтажем и транспортировкой неисправного изделия в период гарантийного срока, покупателю не возмещаются. В случае необоснованности претензий, затраты на диагностику и экспертизу изделия оплачиваются покупателем.

9. ГАРАНТИЙНЫЙ ТАЛОН

Сервисное обслуживание 1. Дата «»	Отметки о произведенных работах
ФИО/Подпись	
ФИО/Подпись/	
ФИО/Подпись/	
ФИО/Подпись /	Отрывной гарантийный талон Гарантийный талон Тип: Заводской №: Дата продажи: Продавец:
Метод исправления неисправности:	«»20г. М.П. подпись

ВНИМАНИЕ! Гарантия не действует без предъявления заполненного гарантийного талона или выявления фальсификации при его заполнении

Сервисный центр, уполномоченный осуществлять ремонт и техническое обслуживание изделия: г. Армавир, Россия, Краснодарский край, ул. Промзона, 16, ИП Халабурдин П. А., тел.: 8 (989) 296-97-99

Производитель: ИП Халабурдин П.А. ИНН230210395504, ОГРНИП 308230236500030, свидетельство Се 23 007303627 от 30.12.2008 г. Адрес фактический: 352900, Россия, Краснодарский край, г. Армавир, ул. Кирова, д. 112, тел.: 8 (918) 975-35-55, 8 (86137) 7-38-89

Серииныи номер:

www.market.santehgaz.com www.santehgaz.com