РОССИЯ ПАО «ЯРОСЛАВСКИЙ ЗАВОД «КРАСНЫЙ МАЯК»

Система менеджмента качества сертифицирована органом по сертификации ООО «ДКС РУС» на соответствие требованиям ISO 9001:2015, ГОСТ Р ИСО 9001-2015

ЭЛЕКТРОПРИВОДЫ АСИНХРОННЫЕ ОДНОФАЗНЫЕ ЭПК-1300, ЭПК-1800

Руководство по эксплуатации 23.001 РЭ

Содержание

1 Общие сведения об изделии	3
2 Назначение изделия	3
3 Технические характеристики	4
4 Состав изделия и комплект поставки	5
5 Устройство и принцип работы	5
6 Указание мер безопасности	5
7 Подключение к электрической сети	7
8 Подготовка электропривода к работе и порядок работы	8
9 Техническое обслуживание	9
10 Возможные отказы и методы их устранения	9
11 Требования к хранению и транспортированию	10
12 Свидетельство о приемке	10
13 Гарантии изготовителя	10
14 Претензии и иски	11
15 Отзыв и предложения	11
16. Пветные метаплы, используемые в электроприводах	11

Руководство по эксплуатации (далее РЭ) составлено как объединенный документ, содержащий техническое описание изделия, указания по его эксплуатации и гарантированные технические параметры.

1 Общие сведения об изделии

Электроприводы асинхронные однофазные ЭПК-1300, ЭПК-1800 (далее - электроприводы) изготовлены в соответствии с ТУ 4833-009-00239942-2012 «Электроприводы. Технические условия».

Наименование завода — изготовителя — ПАО «Ярославский завод «Красный Маяк».

Система менеджмента качества ПАО «Ярославский завод «Красный Маяк» сертифицирована органом по сертификации ООО «ДКС РУС», который входит в группу компаний ДКС.

Система менеджмента качества соответствует требованиям:

- международного стандарта ISO 9001:2015;
- национального стандарта ГОСТ Р ИСО 9001-2015.

Электроприводы соответствуют требованиям Технических регламентов Таможенного союза:

- ТР ТС 004/2011 «О безопасности низковольтного оборудования»;
- TP TC 020/2011 «Электромагнитная совместимость технических средств».

Регистрационный номер декларации о соответствии EAЭC N RU Д-RU.PA02.B.75004/25.

Дата регистрации декларации о соответствии: 21.03.2025. Декларация о соответствии действительна по 11.03.2030 включительно.

ВНИМАНИЕ! В связи с проводимыми работами по совершенствованию конструкции и технологии изготовления возможны некоторые расхождения между описанием и поставляемым изделием, не влияющие на его техническую характеристику и техническое обслуживание.

2 Назначение изделия

- 2.1 Электроприводы предназначены для передачи механического вращения различным насадкам для инструмента и приспособлениям, а также для комплектования ручных глубинных вибраторов с гибким валом и использующиеся для эксплуатации в помещениях без повышенной опасностью.
- 2.2 Электроприводы соответствуют исполнению У категории 2 ГОСТ 15150 69 и предназначен для эксплуатации в районах, характеризующихся следующими условиями:
 - высота местности над уровнем моря не более 1000 м;
- окружающая среда должна быть взрывобезопасной, не насыщенной токопроводящей пылью, не содержащей агрессивных газов и паров

в концентрациях, которые могут вызвать разрушение металлов и электроизоляционных материалов;

- температура окружающей среды от минус 25 до плюс 40 °C.

3 Технические характеристики

3.1 Основные технические характеристики электроприводов указаны в таблице 1.

Степень защиты электроприводов от внешних воздействий IP23 по ГОСТ 14254-2015.

Таблица 1

Таолица т				
Наименование параметра	ЭПК-1300	ЭПК-1800		
Мощность, кВт:				
номинальная	1,0	1,4		
номинальная потребляемая	1,3	1,8		
Класс изоляции	[3		
Номинальное напряжение однофазной сети, В	2:	20		
Номинальная частота тока, Гц	5	50		
Частота вращения, синхронная, мин ⁻¹	30	000		
Номинальный ток, А	6,5	8,5		
Коэффициент полезного действия, %	7	6		
Коэффициент мощности	0,74	0,98		
Скольжение, %	5			
<u>М макс</u>	1,8	2,14		
М ном	1,0	2,14		
М пуск	0,12	0,16		
М ном	0,12	0,10		
<u>І пуск</u>	3,12	4,25		
I ном	,	,		
Направление вращение		авое		
таправление вращение	(по часово	й стрелке)*		
Емкость рабочего конденсатора				
(напряжением 400450 В), мкФ	23	25		
Режим работы по ГОСТ IEC 60034-1-2014 S1				
Класс защиты по ГОСТ IEC 60745-1-2011		l		
Габаритные размеры, мм:				
длина	350	370		
ширина	180	180		
Высота	280	280		
Масса, кг, не более 14,5 16,5				
* Смотреть со стороны кожуха вентилятора вдоль оси з	электропривод	ца.		

3.2 Характеристика подшипников качения указана в таблице 2.

Таблица 2

Тип электро- привода	Номер по- зиции по рисунку 1	Номер подшипника ГОСТ / международное обозначение	Номер стандарта ГОСТ	Основные размеры, мм	Количество подшипни- ков на изделие
ЭПК-1300, ЭПК-1800	10	80204 / 6204.ZZ.P6Q6	7242-81	20×47×14	2

4 Состав изделия и комплект поставки

- 4.1 Электроприводы (рисунок 1) могут поставляться в двух вариантах:
- вариант поставки №1: электропривод с токоподводящим проводом, вилкой и устройством защитного отключения (УЗО);
- вариант поставки №2: электропривод с токоподводящим проводом и вилкой без УЗО.
 - 4.2 В комплект поставки каждого электропривода входят:
 - электропривод (вариант поставки №1 или №2) 1 шт.;
 - руководство по эксплуатации (РЭ) электропривода 1 экз.

5 Устройство и принцип работы

- 5.1 Однофазный асинхронный электропривод рассчитан на питание от однофазной сети переменного тока частотой 50 Гц и напряжением 220 В.
 - 5.2 Устройство электропривода приведено на рисунке 1.

6 Указания мер безопасности

- 6.1 По типу защиты от поражения электрическим током электропривод относится к I классу ГОСТ IEC 60745-1-2011. В целях обеспечения безопасности при подключении вибратора к сети и его обслуживании необходимо соблюдать: «Правила устройства электроустановок» (ПУЭ); «Правила технической эксплуатации электроустановок потребителей электрической энергии» (приказ №811 от 12.08.2022) и «Правила по охране труда при эксплуатации электроустановок» (приказ №903н от 15.12.2020).
- 6.2 К работе с электроприводом допускаются лица, изучившие настоящее РЭ, а также не имеющие медицинских противопоказаний и прошедшие инструктаж по технике безопасности.
 - 6.3 Место проведения работы с электроприводом:
 - помещения без повышенной опасности;
 - помещения с повышенной опасностью.
- 6.4 К работе с электроприводом (класса I) в помещениях с повышенной опасностью должен допускаться персонал имеющий группу II по электробезопасности.

Подключение к электрической сети и техническое обслуживание электроприводов должен выполнять электротехнический персонал, имеющий группу III по электробезопасности, эксплуатирующий эту электрическую сеть, в соответствии с требованиями настоящего РЭ.

6.5 Запрещается эксплуатировать электропривод с УЗО в условиях воздействия капель и брызг, а также на открытых площадках во время снегопада и дождя.

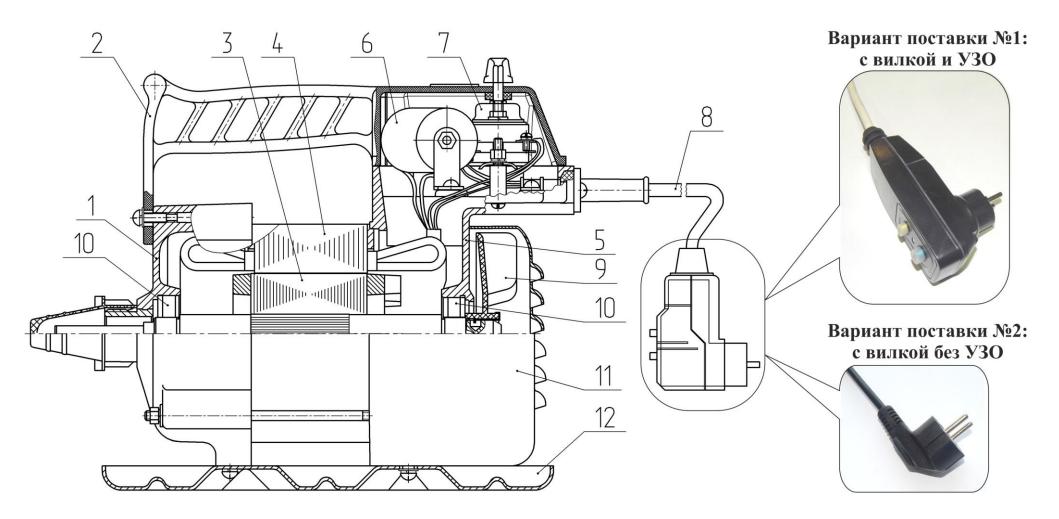


Рисунок 1. Электроприводы ЭПК-1300, ЭПК-1800:

1 – щит передний; 2 – ручка-крышка; 3 – ротор; 4 – статор; 5 – щит задний; 6 – конденсатор; 7 – выключатель пакетный; 8 – токоподводящий провод марки ПВС ГОСТ 7399-97 длиной не менее 5 м; 9 – вентилятор; 10 – подшипник; 11 – кожух; 12 – основание.

- 6.6 Обслуживающему персоналу ЗАПРЕЩАЕТСЯ:
- производить подключение электропривода с УЗО через сетевые удлинители на открытых площадках;
- работать неисправным электроприводом (повреждение токоподводящего провода и его защитной трубки; вилки или УЗО; появление дыма и запаха, характерного для горящей изоляции; нехарактерного шума; нечеткой работе выключателя; появлении трещин на рукоятке выключателя);
 - оставлять электропривод, подключенным к сети, без надзора;
- устранять неисправности электропривода, подключенного к электрической сети;
 - натягивать и перекручивать токоподводящий провод;
- 6.7 При внезапной остановке электропривода вследствие исчезновения напряжения в сети, заклинивания движущихся деталей, отключения УЗО или другом самопроизвольном выключении немедленно переведите выключатель в положение «ОТКЛЮЧЕНО» и отсоедините вилку от розетки. Если при потере напряжения электропривод остался включенным, то при возобновлении питания он самопроизвольно заработает, что может привести к телесному повреждению и (или) материальному ущербу. Повторное включение электропривода производить только после устранения неисправности.
- 6.8 Токоподводящий провод должен быть защищен от случайного повреждения (например, токоподводящий провод следует подвешивать). Непосредственное соприкосновение токоподводящего провода с горячими и масляными поверхностями не допускается.
- 6.9 Все виды технического обслуживания должны производиться после отключения электропривода от сети.

7 Подключение к электрической сети

- 7.1 Электроприводы (рисунок 1) могут поставляться в двух вариантах:
- вариант поставки №1: электропривод с токоподводящим проводом, вилкой и устройством защитного отключения (УЗО), рассчитанным на номинальный отключающий дифференциальный ток не более 30 мА;
- вариант поставки №2: электропривод с токоподводящим проводом и вилкой без УЗО.
- 7.2 Электропривод необходимо подключать к однофазной электрической сети переменного тока частотой 50 Гц и напряжением 220 В.

Для защиты от поражения электрическим током подключать электропривод с исправным заземляющим проводом (PE) только к штепсельным розеткам с защитным контактом 15 A/16 A с соответствующим предохранителем против тока перегрузки.

В случае отсутствия в розетке защитного заземляющего контура его необходимо сделать с помощью квалифицированного электрика.

Заземление осуществляется медным проводом сечением не менее 2,5 мм², присоединенным к стальной одно или двух дюймовой трубе длиной один метр. Трубу забить в землю на глубину 0,6...0,7 метра.

7.3 Подключение электропривода с токоподводящим проводом, вилкой и УЗО.

Подключение вилки с УЗО производить в сухих закрытых помещениях. В помещениях с повышенной опасностью УЗО должно быть размещено в электрических щитках со степенью защиты не ниже IP44, при наружной установке не ниже IP54.

Убедиться в исправности УЗО. Проверка осуществляется нажатием на кнопку «ТЕСТ». Проверить работу электропривода на холостом ходу.

7.4 Подключение электропривода с токоподводящим проводом и вилкой без УЗО.

Согласно требованиям ГОСТ IEC 60745-1-2011 и ГОСТ IEC 62841-2-1-2019 разрешается подключать электропривод конструкции класса I без УЗО к одному из следующих источников электропитания:

- к изолирующему трансформатору;
- к двигатель-генератору, который обеспечивает такую же степень изоляции от электрической сети, которую имеет изолирующий трансформатор.

ВНИМАНИЕ! Подключение электропривода к электрической сети, а также техническое обслуживание и устранение отдельных отказов должны производиться специалистами не ниже III квалификационной группы по электробезопасности, в соответствии с требованиями настоящего РЭ.

8 Подготовка электропривода к работе и порядок работы

- 8.1 Перед началом работы необходимо выполнить требования раздела 6 «Указания мер безопасности».
- 8.2 Применять электропривод допускается только в соответствии с назначением.
- 8.3 При эксплуатации электропривода необходимо соблюдать все требования по эксплуатации, не подвергать его ударам, перегрузкам, воздействию грязи, нефтепродуктов.
- 8.4 При подготовке к работе необходимо осмотреть электропривод и убедиться:
 - в соответствии комплектности;
 - в надежности затяжки резьбовых соединений;
 - в исправности токоподводящего провода, его защитной трубки;
- в исправности выключателя, наличии и исправности защитного кожуха вентилятора;
- в соответствии напряжения и частоты тока сети напряжению и частоте тока электропривода.

9 Техническое обслуживание

- 9.1 Конструкция электропривода, применяемые при его изготовлении материалы и комплектующие изделия обеспечивают надежную эксплуатацию в течение длительного времени.
- 9.2 В целях обеспечения надёжной работы электропривода при его эксплуатации должны выполняться следующие виды технического обслуживания:
 - ежедневный осмотр с проверкой затяжки резьбовых соединений;
- проверка надёжности электрических контактных соединений, а также целостности изоляции токоподводящего провода два раза в месяц;
 - проверка работоспособности УЗО.

При соблюдении правил эксплуатации электропривода закладываемой в подшипники смазки достаточно на весь срок работы.

- 9.3 Электропривод следует разбирать только в случаях крайней необходимости:
 - при сильном нагреве корпуса электропривода;
 - при замыкании на корпус обмотки статора;
- 9.4 Разборка электропривода производится в следующей последовательности:
- развернуть резьбовые соединения электропривода (рисунок 1), снять ручку-крышку (2), отсоединить от контактов выключателя (7) то-коподводящий провод (8) и выводные провода обмотки статора (4) (при необходимости), снять подшипниковые щиты (1) и (5).
- 9.5 Сборку электропривода производить в последовательности, обратной разборке.

10 Возможные отказы и методы их устранения

10.1 Возможные отказы и методы их устранения указаны в таблице 3.

Таблица 3

Наименование отказа, внешние его проявления и дополнительные признаки	Вероятная причина	Метод устранения	Группа сложности работ по устранению отказа
Корпус электропривода под напряжением.	Нарушена изоля- ция.	Заменить или изолировать поврежденный токоподводящий провод.	1
	Неисправно УЗО.	Отремонтировать или заменить УЗО.	1
При подключении электропривод не работает.	Обрыв одной из жил токоподводящего провода.	Устранить обрыв или заменить токоподводя- щий провод.	1

Продолжение таблицы 3

Наименование отказа, внешние его проявления и дополнительные признаки	Вероятная причина	Метод устранения	Группа сложности работ по устранению отказа
При подключении электропривод не работает.	Срабатывает защита УЗО.	Устранить неисправность в области защиты УЗО.	1
	Неисправно УЗО.	Проверить УЗО.	1
	Ослабли конта- ктные соединения выключателя.	Подтянуть контактные соединения.	1
При подключении электропривод гудит.	Поврежден конденсатор.	Заменить конденсатор.	1

11 Требования к хранению и транспортированию

11.1 Электроприводы должны храниться в сухом помещении.

Условия хранения – 2, условия транспортирования – 5 по ГОСТ 15150-69.

11.2 Утилизация

Вышедшие из строя электроприводы не представляют опасности для здоровья человека и окружающей среды.

Материалы, из которых изготовлены детали электропривода (сталь, медь, алюминий), поддаются внешней переработке и могут быть реализованы по усмотрению потребителя.

Детали электропривода, изготовленные с применением пластмассы, изоляционные материалы могут быть захоронены.

12 Свидетельство о приемке

Электропривод ЭПК-1300,	ЭПК-1800
заводской №	изготовлен и принят в соответствии с
•	государственных стандартов, действую-
цей технической документацие	ей и признан годным для эксплуатации.
Karrana an OTK	
контролер ОТК:	
Дата: 20	Γ.
Контролер ОТК:	

13 Гарантии изготовителя

13.1 Гарантийный срок.

Изготовитель гарантирует соответствие электроприводов требованиям ТУ 4833-009-00239942-2012 при соблюдении потребителем условий эксплуатации, хранения и транспортирования.

Гарантийный срок службы электроприводов — 12 месяцев со дня ввода в эксплуатацию, но не более 18 месяцев со дня отгрузки с завода-изготовителя.

13.2. Показатели надежности.

Средняя наработка до отказа, не менее 1000 ч.

14 Претензии и иски

Действия по претензиям и искам, вытекающие из поставки продукции ненадлежащего качества, в соответствии с законодательством РФ и договором (контрактом) на поставку.

15	Отзыв и про	едложения		

ПАО «Ярославский завод «Красный Маяк»

150008, г. Ярославль, пр. Машиностроителей, 83.

Бесплатный звонок: 8 (800) 444-11-94

Сайт: <u>https://vibrotrade.ru</u> E-mail: <u>sale@vibrotrade.ru</u>

16 Цветные металлы, используемые в электроприводах

Таблица 4

Тип	Сплав алюминиевый АК5М7	Медь М1 ГОСТ 859-2014
электропривода	ГОСТ 1583-93, кг	(провод обмоточный), кг
ЭПК-1300	1.0	1,76
ЭПК-1800	1,9	2,25

Редакция: 24.03.2025 г.