УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «18» июня 2021 г. № 1053

Регистрационный № 82032-21

Лист № 1 Всего листов 10

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители-регуляторы многофункциональные ТРИД

Назначение средства измерений

Измерители-регуляторы многофункциональные ТРИД (далее по тексту – измерители или приборы) предназначены для измерений и автоматического регулирования температуры и других физических величин на основе сигналов, поступающих от термопреобразователей сопротивления (ТС), термоэлектрических преобразователей (ТП), милливольтовых устройств постоянного тока, тензометрических датчиков, датчиков давления с токовым выходом, а также нормированных аналоговых сигналов постоянного тока.

Описание средства измерений

Принцип работы приборов основан на измерении сигналов, поступающих от термопреобразователей сопротивления, термоэлектрических преобразователей. милливольтовых устройств постоянного тока, тензометрических датчиков, датчиков давления с токовым выходом, а также нормированных аналоговых сигналов постоянного тока. Измеренный сигнал преобразуется в соответствии с настройками прибора, может отображаться на дисплее прибора в цифровом виде или графическом виде передаваться на персональный компьютер по протоколам Modbus-ASCII и Modbus-RTU. На основе измеренных значений приборы могут осуществлять функции сигнализаторов и (или) регуляторов в различных технологических процессах.

Приборы конструктивно выполнены в виде моноблочной конструкции со встроенными внутри модулями. Встроенные модули включают в себя процессорный модуль, измерительные модули сигналов различных датчиков, а также модули управления технологическими процессами. На лицевой панели прибора расположены светодиодная цифро-знаковая индикация (ЖК-дисплей в случае конструктивного исполнения 500) и клавиши управления (при наличии), на задней панели – контактные клеммы для подключения питания прибора, датчиков и различных выходных устройств.

Приборы выпускаются различных моделей с конструктивными исполнениями, различающимися количеством входных и выходных каналов измерений и регулирования, типом первичных преобразователей, конструктивным исполнением, типом электропитания и классом точности в соответствии с кодом заказа, представленном ниже:

Измеритель-регулятор многофункциональный ТРИД [1] [2]-[3]-[4]-[5] [6]. Расшифровка кода заказа приведена в Таблице 1. Таблица 1

[1] -	Модел
т	IOI

- [2] Код конструктивного исполнения:
- 101, 112, 114 светодиодная цифро-знаковая индикация, металлический корпус для щитового монтажа, одноканальный
- 111 светодиодная цифро-знаковая индикация, пластиковый корпус для щитового монтажа, одноканальный
- 121 светодиодная цифро-знаковая индикация, пластиковый корпус для щитового монтажа, одноканальный
- 122, 124 светодиодная цифро-знаковая индикация, металлический корпус для щитового монтажа, многоканальный
- 144 светодиодная цифро-знаковая индикация, металлический корпус для щитового монтажа, многоканальный, 4 окна индикации
- 146 светодиодная цифро-знаковая индикация, металлический корпус для щитового монтажа, многоканальный, 6 окон индикации
- 322 светодиодная цифро-знаковая индикация и вертикальная графическая шкала, металлический корпус для щитового монтажа
- 332 светодиодная цифро-знаковая индикация и дуговая графическая шкала, металлический корпус для щитового монтажа
- 342 светодиодная цифро-знаковая индикация и круговая графическая шкала, металлический корпус для щитового монтажа
 - 222 светодиодная цифро-знаковая индикация, корпус на DIN-рейку
- 151 светодиодная цифро-знаковая индикация, металлический корпус для щитового монтажа, пятизнаковая индикация, 1 строка индикации
- 152 светодиодная цифро-знаковая индикация, металлический корпус для щитового монтажа, пятизнаковая индикация, 2 строки индикации
 - 500 жидкокристаллический дисплей, металлический корпус для щитового монтажа
- [3] Количество входов и типы и количество выходных устройств:
 - хВ х-количество, В вход (канал)
 - хР х-количество, Р релейный выход (электромагнитное реле)
 - хС х-количество, С оптосимисторный ключ
 - хА х-количество, А токовый выход
- хТ х-количество, Т транзисторный ключ
- [4] 1Д-дополнительный дискретный вход (указывается только при наличии)
- [5] Интерфейс RS485 (указывается только при наличии)
- [6] Питание, указывается в скобках, если отличается от базового варианта

Фотографии общего вида различных конструктивных исполнений измерителейрегуляторов многофункциональных ТРИД приведены на рисунках 1-14.

Заводской номер в виде буквенно-цифрового кода наносится на заднюю панель приборов при помощи наклейки.

Пломбирование приборов не предусмотрено.

Конструкция приборов не предусматривает нанесение знака поверки на средство измерений.

Рисунок 1 — Общий вид конструктивного исполнения 101

Рисунок 3 — Общий вид конструктивных исполнений 122, 124, 112, 114

Рисунок 2 – Общий вид конструктивных исполнений 112, 114

Рисунок 4 — Общий вид конструктивного исполнения 111

Рисунок 5 — Общий вид конструктивного исполнения 121

Рисунок 6 – Общий вид конструктивного исполнения 222

Рисунок 7 — Общий вид конструктивного исполнения 144

Рисунок 8 – Общий вид конструктивного исполнения 146

Рисунок 9 — Общий вид конструктивного исполнения 322

Рисунок 10 – Общий вид конструктивного исполнения 332

Рисунок 11 – Общий вид конструктивного исполнения 342

Рисунок 12 – Общий вид конструктивного исполнения 500

Рисунок 14 – Общий вид конструктивного исполнения 152

Программное обеспечение

Программное обеспечение (ПО) приборов состоит только из встроенного, метрологически значимого ПО. Данное ПО находится в ПЗУ, размещенном внутри корпуса измерителя, и недоступное для внешней модификации. Метрологические характеристики приборов нормированы с учетом влияния встроенного ПО.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с рекомендацией по метрологии Р 50.2.077-2014, программное обеспечение защищено от преднамеренных изменений с помощью специальных программных средств.

Идентификационные данные встроенной части ΠO приведены в таблице 2. Таблица 2

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ТРИД
Номер версии (идентификационный номер) ПО, не ниже	1.25
Цифровой идентификатор программного обеспечения	отсутствует

Метрологические и технические характеристики

Метрологические и основные технические характеристики измерителей-регуляторов многофункциональные ТРИД приведены в таблицах 3-6.

Таблица 3 – Метрологические характеристики измерителей моделей ИСУ, РТП, РТУ, РТМ, РК.

Типы НСХ ⁽¹⁾ , входные сигналы	Диапазон измерений	Единица младшего разряда	Пределы допускаемой основной приведенной погрешности, % (от диапазона измерений)	Пределы допускаемой дополнительной приведенной погрешности (от диапазона измерений), вызванной изменением температуры окружающего воздуха в рабочем диапазоне температур от нормальных условий (от +18 до + 22°C) на 10 °C, %
Pt100 (α=0,00385 °C ⁻¹)	от -200 до +750 °C			
Pt50 (α=0,00385 °C ⁻¹)	от -200 до +850 °C			
100Π (α=0,00391 °C ⁻¹)	от -200 до +750 °C			
50Π (α=0,00391 °C ⁻¹)	от -200 до +850 °C			
100M (α=0,00428 °C ⁻¹)	от -180 до +200 °C			
50M (α=0,00428 °C ⁻¹)	от -180 до +200 °C			
100H (α=0,00617 °C ⁻¹)	от -60 до +180 °C	0,1°C или 1°C	±0,5	±0,25
50H (α=0,00617 °C ⁻¹)	от -60 до +180 °C			
K	от -50 до +1300 °C			
N	от -250 до +1300 °C]		
L	от -200 до +800 °C]		
S	от 0 до +1600 °C			
R	от 0 до +1600 °C]		
В	от +600 до +1600 °C]		
A-1	от +1000 до +2500 °C			
A-2	от +1000 до +2500 °C]		
A-3	от +1000 до +2500 °C			

Типы НСХ ⁽¹⁾ , входные сигналы	Диапазон измерений	Единица младшего разряда	Пределы допускаемой основной приведенной погрешности, % (от диапазона измерений)	Пределы допускаемой дополнительной приведенной погрешности (от диапазона измерений), вызванной изменением температуры окружающего воздуха в рабочем диапазоне температур от нормальных условий (от +18 до + 22°C) на 10 °C, %
J	от -40 до +900 °C			
T	от -200 до +400 °C			
E	от -200 до +900 °C	0,1°C	±0,5	±0,25
M	от -200 до +100 °C	или 1°С	$\pm 0,3$	±0,23
PK-15	от +400 до +1500 °C			
PC 20	от +900 до +1900 °C			
мА	от 0 до 20			
мА	от 4 до 20	0,1 или		±0,125
мВ ⁽²⁾	от -10 до +75	0,01 (4)		
$MB^{(3)}$	от -9,99 до +72			

Примечания:

- (1) типы НСХ термопреобразователей сопротивления и термоэлектрических преобразователей по ГОСТ 6651-2009 (МЭК 60751) и ГОСТ Р 8.585-2001 (МЭК 60584-1) соответственно.
- градуировки РК-15 и РС-20 по ГОСТ 10627-71;
- пределы допускаемой абсолютной погрешности компенсации температуры свободных (холодных) концов термоэлектрического преобразователя $\pm 1,0$ °C во всем диапазоне измеряемых температур;
- (2) для всех кодов конструктивного исполнения кроме конструктивного исполнения 500;
- (3) для конструктивного исполнения 500.
- (4) в единицах измерений выбранного типа входного сигнала, в случае работы в режиме масштабирования единица младшего разряда устанавливается оператором.

Таблица 4 – Метрологические характеристики измерителей модели ИСВ

Наименование характеристики	Значение характеристики
Диапазон входного сигнала, мВ	от -16 до +16
Минимальное и максимальное полные сопротивления датчика (RLminRLmax), Ом	от 50 до 2000
Максимальное входное напряжение, В	4
Диапазон измерений рабочего коэффициента передачи	от 1,0 до 3,0
(РКП) датчика, мВ/В	
Пределы допускаемой основной приведенной погрешности, % (от диапазона измерений)	±0,25
Пределы допускаемой дополнительной приведенной по-	
грешности (от диапазона измерений), вызванной изменени-	±0,125
ем температуры окружающего воздуха в рабочем диапазоне	
температур от нормальных условий (от +18 до + 22 °C) на	
10 °C, %	
Количество подключаемых тензодатчиков, шт.	от 1 до 6 (на каждый канал)

Таблица 5 – Метрологические характеристики измерителей модели ИСД

Наименование характеристики	Значение характеристики	
Выходной сигнал подключаемых датчиков давления, мА	от 0 до 20 от 4 до 20	
Пределы допускаемой основной приведенной погрешности (от диапазона измерений), %	±0,25	
Пределы допускаемой дополнительной приведенной погрешности (от диапазона измерений), вызванной изменением температуры окружающего воздуха в рабочем диапазоне температур от нормальных условий (от +18 до + 22 °C) на 10 °C, %	±0,125	

Таблица 6 – Основные технические характеристики

таолица о – Основные технические характеристики	
Наименование характеристики	Значение характеристики
Параметры электрического питания:(1)	•
- напряжение переменного тока, В	от 187 до 242
- частота переменного тока, Гц	50
Напряжение питания весоизмерительного датчика, подключаемо-	
го к приборам модели ИСВ, (Uexe), В	5
Параметры электрического питания датчика, подключаемого к	
приборам модели ИСД:	
- напряжение постоянного тока, В	24
- сила тока, мА	150
Габаритные размеры (длина×высота×ширина), не более, мм:	
- для конструктивных исполнений 101, 112, 114, 122, 124, 144,	
146, 322, 332, 342, 151, 152, 500;	$96,0 \times 96,0 \times 110,0$
- для конструктивного исполнения 111	$48,0 \times 48,0 \times 110,0$
- для конструктивного исполнения 121	$48,0 \times 96,0 \times 110,0$
- для конструктивного исполнения 222	$52,0 \times 92,0 \times 60,0$
Температура окружающей среды при эксплуатации, °С	от -30 до +50
Относительная влажность окружающей среды, не более, %	90
Средняя наработка на отказ, ч, не менее	45000
Средний срок службы, лет, не менее	10
Примечание:	
	~

^{(1) –} Базовый вариант питания, по согласованию с заказчиком приборы могут быть изготовлены с другими вариантами питания.

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом на корпус прибора при помощи наклейки.

Комплектность средства измерений

Комплектность поставки измерителей-регуляторов многофункциональных ТРИД приведена в таблице 7.

Таблина 7

Наименование	Обозначение	Кол-во		
Измеритель-регулятор многофункциональный ТРИД	модель и конструк-			
	тивное исполнение - в	1 шт.		
	соответствии	1 1111.		
	с заказом			
Паспорт	ВПМ 421210.009 ПС	1 экз.		
Руководство по эксплуатации (в электронном виде)	ВПМ 421210.009 РЭ	1 экз. (*)		
Методика поверки	МП 207-064-2020	1 экз.		
Комплект монтажных частей (если предусмотрено	омплект монтажных частей (если предусмотрено			
модификацией прибора)	_	1 комп.		
Примечания:				
(*) - Доступно для свободного скачивания на сайте изготовителя.				

Сведения о методиках (методах) измерений

приведены в разделе «Использование по назначению» документа ВПМ 421210.009 РЭ «Измерители-регуляторы многофункциональные ТРИД. Руководство по эксплуатации».

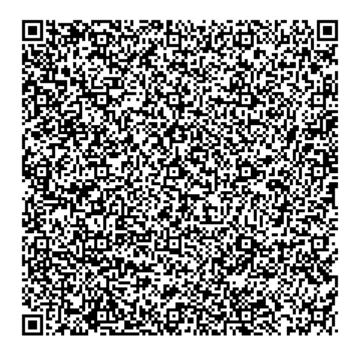
Нормативные и технические документы, устанавливающие требования к измерителямрегуляторам многофункциональным ТРИД

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

ГОСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные.


ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры.

Приказ Росстандарта от 30.12.2019 г. № 3457 «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы».

Приказ Росстандарта от 01.10.2018 г. № 2091 «Об утверждении государственной поверочной схемы для средств измерений силы постоянного электрического тока в диапазоне от $1\times10-16$ до 100 А».

Приказ Росстандарта от 30.12.2019 г. № 3456 «Об утверждении государственной поверочной схемы для средств измерений электрического сопротивления постоянного и переменного тока».

ТУ 4212-009-60694339-20 Измерители-регуляторы многофункциональные ТРИД. Технические условия.

