

KCM

ПРИБОРЫ МНОГОТОЧЕЧНОГО МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ

Современно и надежно!

8-800-200-20-63 www.ksmeter.ru

ПРИБОРЫ МНОГОТОЧЕЧНОГО МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ КСМ

Приборы многоточечного мониторинга электроэнергии КСМ предназначены для измерений электрических параметров в сетях переменного и постоянного тока с отображением результатов измерений в цифровой форме, передачи результатов измерений по цифровым интерфейсам связи, телесигнализации и телеуправления.

Приборы состоят из отдельных модулей измерительных и датчиков тока, соединяющихся между собой с помощью шины передачи данных. Благодаря возможности распределения в пространстве составных частей, различным форматам модулей и датчиков, а также их малогабаритности, приборы могут быть интегрированы в ограниченные пространства электроустановок.

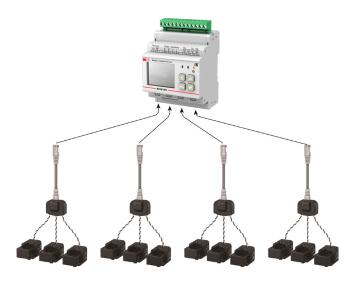
ОБЛАСТЬ ПРИМЕНЕНИЯ

- Низковольтные комплектные устройства (НКУ)
- Центры обработки данных (ЦОД)
- Цифровые подстанции (ЦП)
- Системы Автоматизации и РЗА
- Зарядные станции электромобилей

Принцип действия приборов основан на измерениях мгновенных значений напряжения и силы тока, преобразовании результатов измерений в цифровую форму при помощи АЦП, дальнейшей их обработке микропроцессором и отображении результатов измерений на дисплее прибора или внешнего персонального компьютера. Результаты измерений могут быть переданы на внешний ПК через интерфейс связи RS-485. Управление процессом измерений осуществляется при помощи микропроцессора.

Настройка и просмотр результатов измерений осуществляется с помощью внешнего ПК через интерфейс связи RS-485. У модулей измерительных, снабженных дисплеем, имеется дополнительная возможность настройки приборов и просмотра результатов измерений с помощью кнопок управления на лицевой панели через систему меню.

ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ МОДИФИКАЦИЙ ПРИБОРОВ


Таблица 1. Измеряемые параметры и дополнительные функции приборов КСМ

	Модификация (исполнение)						
Наименование характеристики	KCM-M1-1	KCM-M1-2	KCM-M2	КСМ-МЗ			
Измерение напряжения переменного тока	•	•		•			
Измерение напряжения постоянного тока			•				
Измерение силы переменного тока		•					
Измерение силы постоянного тока			•				
Измерение частоты		•					
Измерение электрической мощности		•	•				
Измерение коэффициента мощности	•	•		•			
Измерение электрической энергии	•	•		•			
Измерение коэффициента n-ой гармонической составляющей, n от 2 до 31, напряжения (KU(n)), тока (KI(n))	•	•		•			
Измерение коэффициента искажения сину- соидальности напряжения (KU), тока (KI)	•	•		•			
Измерение температуры							
Измерение тока утечки							
Подключение с помощью датчиков тока ВСТ, SCT, FST (3 датчика)				•			
Подключение с помощью датчиков тока ВСТ, SCT, FST (до 12 датчиков)							
Прямое подключение токовых входов	•						
Подключение с использованием внешнего шунта с номинальным напряжением 75 мВ			•				
Импульсный выход	•	•	•	•			
Порт связи RS-485, протокол Modbus RTU							
Жидкокристаллический индикатор	•	•	•				
Крепление на DIN-рейку	•		•				

Примечание – «■» - характеристика, функция имеется, «□» - характеристика, функция отсутствует

ПРИБОРЫ МНОГОТОЧЕЧНОГО МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ КСМ-М1

ОПИСАНИЕ И ОСОБЕННОСТИ ПРИБОРОВ МНОГОТОЧЕЧНОГО МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ КСМ-M1

Приборы многоточечного мониторинга электроэнергии КСМ-М1 имеют модификации с измерительными модулями с ЖК-индикатором, что дает возможность настройки и просмотра результатов измерений с помощью кнопок управления на лицевой панели через систему меню.

Приборы позволяют подключать до 4 трехфазных точек или до 12 однофазных точек измерения (присоединений).

МОДИФИКАЦИИ ИЗМЕРИТЕЛЬНОГО МОДУЛЯ ПРИБОРОВ

KCM-M1-1

- Измеряет напряжение, ток, мощность, частоту, энергию, гармоники в трехфазной сети, ток утечки и температуру.
- Имеет 1 интерфейс RS-485, импульсный выход.
- Погрешность измерения: приведенная тока, напряжения, мощности, активной энергии $\pm 0,5\%$; реактивной мощности $\pm 1,5\%$; коэффициента мощности $\pm 0,5\%$; абсолютная частота $\pm 0,01\%$

KCM-M1-2

- Измеряет напряжение, ток, мощность, частоту, гармоники в трехфазной сети.
- Имеет 1 интерфейс RS-485, импульсный выход.
- К модулю подключаются внешние датчики тока (соединительный кабель RJ12).
- Погрешность измерения: приведенная тока, напряжения, мощности, активной энергии $\pm 0,5\%$; реактивной мощности $\pm 1,5\%$; коэффициента мощности $\pm 0,5\%$; абсолютная частота $\pm 0,01\%$

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ МОДИФИКАЦИЙ ПРИБОРОВ

КСМ-М1-1-0-1- Номинальное напряжение или коэффициент трансформации⁽²⁾ Номинальный ток или коэффициент трансформации⁽¹⁾

ПРИМЕРЫ ОФОРМЛЕНИЯ ЗАКАЗА

Прибор многоточечного мониторинга электроэнергии КСМ-М1-1-0-1-5A-380B

Прибор многоточечного мониторинга электроэнергии типа КСМ-М1-1, с номинальным током 5A, номинальным линейным напряжением 380B.

Прибор многоточечного мониторинга электроэнергии КСМ-M1-2-1-1-5A-100B-3

Прибор многоточечного мониторинга электроэнергии типа КСМ-М1-2, с тремя внешними неразборными датчиками тока типа ВСТ, с номинальным током внешнего датчика тока 5A, номинальным линейным напряжением 100B (фазным 100/√3 B), без дополнительных модулей коммутации.

⁽¹⁾ В случае подключения измерительных входов тока прибора к измеряемой цепи непосредственно, без измерительных трансформаторов тока, указать номинальный входной ток прибора, например, 5 А.

⁽²⁾ В случае подключения измерительных входов напряжения прибора к измеряемой цепи непосредственно, без измерительных трансформаторов напряжения, указать номинальное напряжение, например, 380 В. В случае подключения измерительных входов напряжения прибора к измеряемой цепи через измерительные трансформаторы напряжения, указать коэффициент трансформации напряжения, например, 110000 В/100 В.

⁽¹⁾ Для выбора варианта датчика тока необходимо воспользоваться Приложением 2.

⁽²⁾ Указать номинальный ток выбранного датчика тока.

⁽³⁾ В случае подключения измерительных входов напряжения прибора к измеряемой цепи непосредственно, без измерительных трансформаторов напряжения, указать номинальное напряжение, например, 380 В. В случае подключения измерительных входов напряжения прибора к измеряемой цепи через измерительные трансформаторы напряжения, указать коэффициент трансформации напряжения, например, 110000 В/100 В.

⁽⁴⁾ В зависимости от необходимой схемы включения.

⁽⁵⁾ В зависимости от датчика тока. Для выбора варианта воспользуйтесь Приложением 2.

ПРИБОРЫ МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ ПОСТОЯННОГО ТОКА КСМ-М2

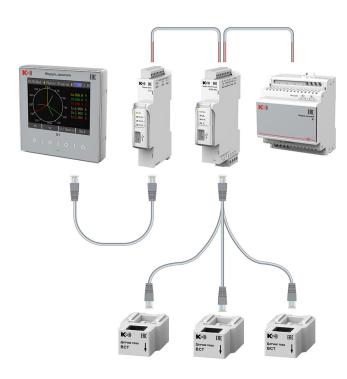
ОПИСАНИЕ И ОСОБЕННОСТИ ПРИБОРОВ МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ ПОСТОЯННОГО ТОКА КСМ-M2

Приборы многоточечного мониторинга КСМ-М2 имеют ЖК-индикатор, что дает возможность настройки и просмотра результатов измерений с помощью кнопок управления на лицевой панели через систему меню.

Предназначены для работы в электрических сетях постоянного тока. Подключаются с использованием внешнего шунта с номинальным напряжением 75 мВ.

- Измеряет напряжение, ток, мощность, энергии постоянного тока.
- Имеет импульсный выход и 1 интерфейс RS-485 в трехфазной сети.
- Погрешность измерения: приведенная тока, напряжения, мощности $\pm 0,5\%$; реактивной мощности $\pm 2\%$; активной энергии в обоих направлениях $\pm 1\%$.

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ МОДИФИКАЦИЙ ПРИБОРОВ


КСМ-М2-1-0-1- Номинальное напряжение или коэффициент трансформации
Номинальный ток

ПРИМЕР ОФОРМЛЕНИЯ ЗАКАЗА

Прибор мониторинга электроэнергии КСМ-М2-1-0-1-100A/75мB-1000B Прибор многоточечного мониторинга электроэнергии типа КСМ-М2, с номинальным током 100A, номинальным линейным напряжением 1000B.

ПРИБОРЫ МНОГОТОЧЕЧНОГО МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ КСМ-МЗ

ОПИСАНИЕ И ОСОБЕННОСТИ ПРИБОРОВ МНОГОТОЧЕЧНОГО МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ КСМ-МЗ

Прибор многоточечного мониторинга электроэнергии КСМ-МЗ имеет модификации с измерительными модулями без индикатора, есть возможность использования жидкокристаллического дисплея, предназначенного для просмотра данных измерений и настройки.

Приборы позволяют подключать до 32 трехфазных точек или до 96 однофазных точек измерения (присоединений). Дополнительные функции обеспечиваются присоединением вспомогательных модулей.

измерительный модуль

- Измеряет напряжение, ток, мощность, частоту, энергию и гармоники в трехфазной сети.
- Имеет 1 интерфейс RS-485, оптический импульсный выход, к модулю подключаются внешние датчики тока.
- Каждый модуль может быть укомплектован одним модулем функций.
- Погрешность измерения: приведенная тока, напряжения, мощности, активной энергии $\pm 0,5\%$; реактивной мощности $\pm 1,5\%$; коэффициента мощности $\pm 0,5\%$; абсолютная частота $\pm 0,01\%$

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ МОДИФИКАЦИЙ ПРИБОРОВ

⁽¹⁾ Для выбора необходимо воспользоваться Приложением 2.

ПРИМЕР ОФОРМЛЕНИЯ ЗАКАЗА

Прибор многоточечного мониторинга электроэнергии КСМ-M3-SCT-3-100A-100B-3-D1- Z1-C14-0

Прибор многоточечного мониторинга электроэнергии типа КСМ-М3 с внешними разборными датчиками тока типа SCT, с номинальным током внешнего датчика тока 100A, номинальным линейным напряжением 100B (фазным $100/\sqrt{3}$ B), количество внешних датчиков тока - 3, с дополнительными модулями дисплея D1, коммутации Z1 (для подключения датчиков тока), связи C14 (3 RS-485), без дополнительных модулей функций.

⁽²⁾ Указать номинальный ток выбранного датчика тока.

⁽³⁾ Указать номинальный ток выбранного датчика тока.

⁽⁴⁾ При желании прибор может быть поставлена без дисплея.

⁽⁵⁾ В зависимости от датчика тока и дополнительных модулей. Для выбора варианта воспользуйтесь Таблицей 2 и 3, Приложением 2.

⁽⁶⁾ При желании может быть выбраны дополнительные модули связи, характеристики указаны в Таблице 2.

⁷⁾ При желании может быть выбраны дополнительные модули функций, характеристики указаны в Таблице 3.

ОПИСАНИЕ И ОСОБЕННОСТИ ДОПОЛНИТЕЛЬНЫХ МОДУЛЕЙ ПРИБОРОВ

Модуль дисплея D1

Показывает измеряемые параметры и используется для настройки измерительных модулей, тип — ЖК, поставляется в комплекте с соединительным кабелем RJ12-1

Модуль питания Р

Обеспечивает питание 24В для Модуль связи С14 и измерительного модуля КСМ-М3

Модуль связи С14

Содержит 3 цифровых интерфейса RS-485 (COM1) с протоколом связи Modbus-RTU для подключения к модулю измерительному КСМ-М3, к компьютеру верхнего уровня и к модулю дисплея D1

Модуль функций М13

Имеет 4 входа для измерения температуры и соединяется с модулем измерительным КСМ-МЗ с помощью цифрового интерфейса RS-485 (SBUS) с протоколом связи Modbus-RTU

Модуль функций М14

Имеет 4 входа для измерения температуры, 3 дискретных входа и соединяется с модулем измерительным КСМ-МЗ с помощью цифрового интерфейса RS-485 (SBUS) с протоколом связи Modbus-RTU

Модуль функций М15

Имеет 4 входа для измерения температуры, 3 входа для измерения утечки тока и соединяется с модулем измерительным КСМ-МЗ с помощью цифрового интерфейса RS-485 (SBUS) с протоколом связи Modbus-RTU

Модуль функций М16

Имеет 3 дискретных входа и соединяется с модулем измерительным КСМ-МЗ с помощью цифрового интерфейса RS-485 (SBUS) с протоколом связи Modbus-RTU

Модуль функций М17

Имеет 4 входа для измерения температуры, 3 релейных выхода и соединяется с модулем измерительным КСМ-МЗ с помощью цифрового интерфейса RS-485 (SBUS) с протоколом связи Modbus-RTU

Таблица 2. Технические параметры модуля связи

Параметр	Значение
Степень защиты	IP20
Входные сигналы, электропитание и выходные сигналы имеют гальваническую развязку с сопротивлением	>100 MOM
Диапазон напряжения	24 B ± 20%
Потребляемая мощность не более	5 BA
Тип интерфейса	RS485 (COM1)
Количество портов связи	3
Скорость передачи данных	9600 бит/с
Протокол связи	Modbus-RTU

Таблица 3. Технические параметры модулей функций

Параметр	M13	M14	M15	M16	M17
Степень защиты	IP20	IP20	IP20	IP20	IP20
Входные сигналы, электропитание и выходные сигналы имеют гальваническую развязку с сопротивлением	>100 MOm	>100 MOM	>100 МОм	>100 МОм	>100 MOM
Дискретные входы (телесигнализация) с внутренним питанием =24 В \pm 20%	_	3	_	3	_
Релейные выходы	_	-	-	-	3 релейных выхода (твердотельное реле)
Выходы для измерения температуры в диапазон измерения -20120°C	4	4	4	-	4
Входы для измерения утечки тока (0-1,2А)	_	_	3	_	-
Тип интерфейса	RS485 (SBUS)				
Скорость передачи данных	38400 бит/с				
Протокол связи	Modbus-RTU	Modbus-RTU	Modbus-RTU	Modbus-RTU	Modbus-RTU

ПРИЛОЖЕНИЕ 1 ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНЫХ МОДУЛЕЙ ПРИБОРОВ МНОГОТОЧЕЧНОГО МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ КСМ

Таблица 4. Номинальные значения измеряемых входных сигналов для приборов КСМ-М1 и КСМ-М3

Наименование характеристики	Значение
Номинальное напряжение переменного тока (U_,), В:	
– фазное (U _{нф})	100/√3; 380/√3
– линейное (междуфазное) (U _{нл})	100; 380
Номинальная сила переменного тока (I _u), А:	
- для прямого включения	5
- для включения через датчики тока BCT, SCT	5; 50; 100; 200; 400; 600
- для включения через датчики тока FCT	600; 1000; 2000; 3000
Частота переменного тока $(f_{_{\!{\rm H}}})$, Гц	50
Коэффициент мощности (cos φ _н)	1
Активная (реактивная, полная) мощность по фазе, Вт (вар, В·А)	$U_{H b} \cdot I_{H}$
Суммарная активная (реактивная, полная) мощность, Вт (вар, В·А)	$\sqrt{3} \cdot \Pi^{\text{HU}} \cdot I^{\text{H}} \cdot (3 \cdot \Pi^{\text{HQ}} \cdot I^{\text{H}})$

Таблица 5. Номинальные значения измеряемых входных сигналов для приборов КСМ-М2

•	
Наименование характеристики	Значение
Номинальное напряжение постоянного тока (U _н), В	1000
Номинальное напряжение постоянного тока по цепи тока при использовании внешнего взаимозаменяемого шунта с номинальными значениями силы постоянного тока ($I_{_{\rm H}}$) в диапазоне от 1 до 15000 $A^{(1)}$, мВ	75
Номинальная мощность постоянного тока (Р,,), Вт	$U_{_{\!\!H}}.I_{_{\!\!H}}$

 $^{^{(1)}}$ Номинальная сила постоянного тока шунта устанавливается в меню прибора

Таблица 6. Метрологические характеристики

Наименование характеристики	Диапазон измерений	Пределы допускаемой основной погрешности ⁽¹⁾
Среднеквадратичное значение напряжения, В	от 0,2∙U _н до 1,2∙U _н	$y = \pm 0.5 \%$
Напряжение постоянного тока, В ⁽²⁾	от ±0,015·U _н до ±1,0·U _н	γ = ±0,5 %
Среднеквадратичное значение силы тока, А: - для прямого включения - для датчиков тока ВСТ - для датчиков тока SCT; FCT	от 0,02·I _н до 1,2·I _н	Y = ±0,5 % Y = ±0,5 % Y = ±1,0 %
Сила постоянного тока, A ⁽²⁾	от ±0,01·I _н до ±1,0 I _н	γ = ±0,5 %
Частота (f), Гц	от 45 до 55	$\Delta = \pm 0.01$
Активная фазная мощность, Вт	от 0,8.∪. до 1,2.∪.	v = +0.5 %
Суммарная активная мощность, Вт	от 0,8·U, до 1,2·U, от 0,02·I, до 1,2·I, соз ф=1	$\gamma = \pm 0.5 \%$ $\gamma = \pm 1.0 \%^{(3)}$
Реактивная фазная мощность, вар	от 0,8·U, до 1,2·U от 0,02·I, до 1,2·I,	$\gamma = \pm 0.5 \%$ $\gamma = \pm 1.0 \% (3)$
Суммарная реактивная мощность, вар	sin φ=1 "	1 2/2
Полная фазная мощность, В-А	от 0,8·U, до 1,2·U от 0,02·I, до 1,2·I,	$\gamma = \pm 0.5 \%$ $\gamma = \pm 1.0 \%$ (3)
Суммарная полная мощность, В-А		$\gamma = \pm 1.0 \%$ (3)
Коэффициент мощности (cos φ) фазный, суммарный	от −0,1 до −1 от +0,1 до +1 от 0,8⋅Մ, до 1,2⋅U от 0,2⋅I _н до 1,2⋅I _н	$\gamma = \pm 0.5 \%$ $\gamma = \pm 1.0 \%$ (3)
Мощность постоянного тока, Вт ⁽²⁾	от $\pm 0,015 \cdot U$ до $\pm 1,0$ U от $\pm 0,01 \cdot I_{_{_{\! H}}}$ до $\pm 1,0$ $I_{_{_{\! H}}}^{_{_{\! H}}}$	γ = ±0,5 %
	от 0,8·U, до 1,2·U, от 0,01· $I_{_{\rm H}}$ до 0,05· $I_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	δ = ±1,0 %
	от 0,8·U, до 1,2·U от 0,05·I', до 1,2·I', соѕ ф=1	δ = ±0,5 %
Электрическая энергия в обоих направлениях активная (EP, EP-), $\mathrm{BT}^{\cdot}\mathrm{u}^{\ (4)}$	от 0,8·U, до 1,2·U, от 0,02·I, до 0,1·I, не включ. cos φ=0,5 (йнд.); cos φ=0,8 (емк.)	δ = ±1,0 %
	от 0,8·U, до 1,2·U ^н от 0,1·I ^н до 1,2·I ^н соs φ=0,5 (инд.) ^н соs φ=0,8 (емк.)	δ = ±0,6 %
	от 0,8·U, до 1,2·U от 0,05· $I_{_{\rm H}}$ до 0,1· $I_{_{\rm H}}$ не включ. соѕ ϕ =1	δ = ±1,5 %
	от 0,8·U, до 1,2·U, от 0,1·I', до 1,2·I, соѕ ф=1	δ = ±1,0 %
Электрическая энергия в обоих направлениях активная (EP, EP-), Вт ⁻ ч ⁽³⁾	от 0,8·U, до 1,2·U от 0,1·I, до 0,2·I, не включ. со\$ φ=0,5 (инд.); соs φ=0,8 (емк.)	δ = ±1,5 %
	οτ 0,8·U, до 1,2·U, οτ 0,2·I', до 1,2·I, cos φ=0,5 (инд.); cos φ=0,8 (емк.)	δ = ±1,0 %
Электрическая энергия постоянного тока в обоих направлениях активная (EP, EP-), BT^{-1}	от $\pm 0.015 \cdot U_{_{\rm H}}$ до $\pm 1.0 \cdot U_{_{_{\rm H}}}$ от $\pm 0.01 \cdot I_{_{_{\rm H}}}$ до $\pm 1.0 \cdot I_{_{_{\rm H}}}$	δ = ±1,0 %
	от 0,8·U, до 1,2·U от 0,02· $I_{_{\rm H}}$ до 0,05· $I_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	δ = ±1,5 %
	от $0,8 \cdot U$, до $1,2 \cdot U$ от $0,05 \cdot I$, до $1,2 \cdot I$, $\sin \phi = 1$	δ = ±1,0 %
Электрическая энергия в обоих направлениях реактивная (EQ, EQ-), вар'ч	от 0,8-U, до 1,2-U, от 0,05- $I_{_{\rm H}}$ до 0,1- $I_{_{ m H}}$ не включ. $\sin \phi = 0,5$	δ = ±1,5 %
	от 0,8·U, до 1,2·U, от 0,1·I" до 1,2·I, sin ф =0,5	δ = ±1,0 %
	от 0,8·U, до 1,2·U, от 0,1·I" до 1,2·I " sin ф"=0,25	δ = ±1,5 %
Коэффициент искажения синусоидальности кривой напряжения (${\sf K_{\scriptscriptstyle U}}$), ${\sf 9}$	0.1.0/ <1/	$\begin{array}{c} \Delta = \pm 0.1 \\ \delta = \pm 10.0 \% \end{array}$
Коэффициент искажения синусоидальности кривой силы тока (${\rm K_I}$), ${\rm \%}$	0,1 %≤K,<3 % 3 %≤K ₁ <60 %	$\Delta = \pm 0.15$ $\delta = \pm 5.0 \%$

⁽¹⁾ Обозначение погрешностей: Δ – абсолютная; δ, % – относительная; γ, % – приведенная. Нормирующее значение при установлении приведенной погрешности принимается равным номинальному значению входного сигнала. (2) Для модификации КСМ-М2. (3) В случае использования датчиков тока SCT и FCT. (4) В случае использования датчиков тока BCT и прямого включения.

Таблица 7. Пределы допускаемой дополнительной погрешности⁽¹⁾

Наименование влияющей величины	Диапазон значений влияющей величины	Пределы допускаемой дополнительной погрешности
Изменение температуры окружающего воздуха	от -20 °C до $+10$ °C не включ.; св. $+30$ °C до $+70$ °C	0,5 предела допускаемой основной погрешности на каждые 10 °C
Изменение относительной влажности воздуха от нормальной	св. 80 % до 95 % (при температуре +35 °C)	пределы допускаемой основной погрешности

При изменении напряжения питания в заданных пределах погрешность измерений находится в пределах допускаемой основной погрешности измерений соответствующей физической величины

Таблица 8. Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания: - напряжение переменного тока, В - частота переменного тока, Гц - напряжение постоянного тока, В	от 80 до 270 50 от 80 до 270
Габаритные размеры (длина×ширина×высота), мм, не более: - модуль измерительный КСМ-M1 - модуль измерительный КСМ-M2 - модуль измерительный КСМ-M3 - модуль связи C14	73×65×100 73×65×100 20×65×112 20×65×112
Масса, кг, не более: - модуль измерительный КСМ-М1 - модуль измерительный КСМ-М2 - модуль измерительный КСМ-М3 - модуль связи C14	0,25 0,25 0,12 0,07
Нормальные условия измерений: - температура окружающего воздуха, °С - относительная влажность воздуха, %	от +10 до +30 от 30 до 80
Рабочие условия измерений: - температура окружающего воздуха, °С - относительная влажность воздуха, %	от –20 до +70; 95 при +35 °
Средний срок службы, лет	10
Средняя наработка на отказ, ч	70 000

ПРИЛОЖЕНИЕ 2

ПОДКЛЮЧЕНИЕ МОДУЛЕЙ ПРИБОРОВ МНОГОТОЧЕЧНОГО МОНИТОРИНГА ЭЛЕКТРОЭНЕРГИИ КСМ С ДАТЧИКАМИ ТОКА

ОПИСАНИЕ И ОСОБЕННОСТИ ДАТЧИКОВ ТОКА И ВСПОМОГАТЕЛЬНЫХ КОМПОНЕНТОВ

Датчик тока ВСТ

Внешний неразборный датчик тока поставляется в комплекте с соединительным кабелем RJ12-3

Датчик тока SCT

Внешний разборный датчик тока поставляется в комплекте с модулем коммутации Z1 и соединительным кабелем RJ12-2

Датчик тока FCT

Внешний разборный датчик тока с гибкой обмоткой поставляется в комплекте с модулем коммутации Z2 и соединительным кабелем RJ12-2

Модуль коммутации Z1

Используется для подключения датчиков тока типа SCT

Модуль коммутации Z2

Используется для подключения датчиков тока типа FCT

Модуль коммутации Z3/Z4

Используется для подключения модулей функций М13-М17

Соединительный кабель

RJ12-1 Кабель длиной 1м для соединения модуля измерительного КСМ-МЗ и модуля дисплея

RJ12-2 Кабель длиной 0,5 м для подключения Z1 и Z2

RJ12-3 Кабель длиной 0,5м для соединения модуля измерительного КСМ-М3 и датчика тока ВСТ

RJ12-4 Кабель для соединения модулей системы, изготавливается по специальному заказу в зависимости от заявленных заказчиком характеристик

Таблица 9. Технические параметры неразборных датчиков тока

Параметр	ВСТ05	BCT100	BCT200	BCT400	ВСТ600
Номинальное значение тока	5 A	100 A	200 A	400 A	600 A
Диапазон тока	0,1 6 A	2 120 A	4 240 A	8 480 A	12 720 A
Класс точности	0.1 %	0.1 %	0.1 %	0.1 %	0.1 %
Испытательное напряжение изоляции	~ 4000 B				
Температура окружающего воздуха	– 40 +70°C				
Температура окружающего воздуха при хранении	– 40 +70°C				
Принадлежности	RJ12-3	RJ12-3	RJ12-3	RJ12-3	RJ12-3
Размер	28×18×44 мм	36×20×59 мм	60×20×80 мм	75×22×95 мм	75×22×95 мм
Диаметр	8 мм	18 мм	24 мм	29 мм	29 мм

Таблица 10. Технические параметры разборных датчиков тока

Параметр	SCT05	SCT50	SCT100	SCT200	SCT400	SCT600
Номинальное значение тока	5 A	50 A	100 A	200 A	400 A	600 A
Диапазон тока	0,1 6 A	1 60 A	2 120 A	4 240 A	8 480 A	12 720 A
Класс точности	1 %	1 %	0.5 %	0.5 %	0.5 %	0.5 %
Испытательное напряжение изоляции	~ 4000 B					
Температура окружающего воздуха	– 10 +50°C					
Температура окружающего воздуха при хранении	– 20 +70°C					
Принадлежности	Z1 + RJ12-2					
Размер	29×27×42 мм	31×29×43 мм	30×31×53 мм	44×39×70 мм	57×41×84 мм	57×41×84 мм
Диаметр	8 мм	10 мм	18 мм	24 мм	29 мм	29 мм

Таблица 11. Технические параметры разборных датчиков тока с гибкой обмоткой

Параметр	FCT600	FCT1000	FCT2000	FCT3000
Номинальное значение тока	600 A	1000 A	2000 A	3000 A
Диапазон тока	12 720 A	20 1200 A	40 2400 A	60 3600 A
Класс точности	1 %	1 %	1 %	1 %
Длина кабеля	2 M	2 M	2 м	2 M
Температура окружающего воздуха	– 20 +70°C	– 20 +70°C	– 20 +70°C	– 20 +70°C
Температура окружающего воздуха при хранении	– 30 +90°C	– 30 +90°C	– 30 +90°C	– 30 +90°C
Принадлежности	Z2 + RJ12-2	Z2 + RJ12-2	Z2 + RJ12-2	Z2 + RJ12-2
Диаметр	65 мм	95 мм	95 мм	95 мм

СХЕМЫ ПОДКЛЮЧЕНИЯ МОДУЛЕЙ ПРИБОРОВ С ДАТЧИКАМИ ТОКА

Схема 1. Подключение КСМ-М1-2 к датчикам тока типа ВСТ.

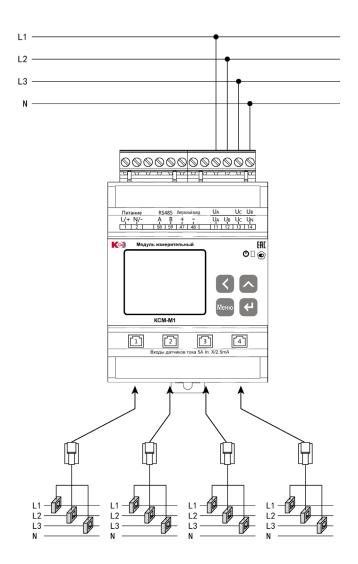
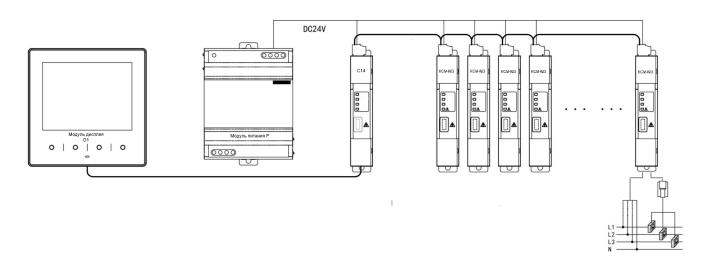



Схема 2. Подключение КСМ-МЗ-1 с датчикам тока типа ВСТ.

ksmeter.ru

