

ТЕХНИЧЕСКИЙ ПАСПОРТ

Электропривод многооборотный DN.ru серии VGD пятикулачковый, со штурвалом, напряжением 220В и 380В

1. ОБЩИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ

- 1.1. Наименование изделия. Электропривод многооборотный DN.RU серии VGD пятикулачковый, со штурвалом, напряжением 220В и 380В.
- 1.2. Назначение. Электропривод многооборотный предназначен для автоматизации процесса управления промышленной арматурой, а также для определения положения запорного органа арматуры..
- 1.3. Принцип работы. Принцип работы электропривода заключается в преобразовании электрического сигнала, поступающего от управляющего устройства во вращательное движение выходного вала.

2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

Таблица 1. Основные параметры

Тип электропривода	многооборотный
Тип двигателя	асинхронный
Напряжение питания	220V/AC, 50Hz, 1 фаза 380V/AC, 50Hz, 3 фазы схема обмотки – «звезда» Y
Кабельный ввод	водонепроницаемый G1/2
Тип присоединения	ГОСТ 34287-2017 (ОСТ 26-07-763-73)
Автоматическое отключение в положениях «открыто», «закрыто» и в случаях заклинивания	есть
Моментная муфта	есть
Класс защиты корпуса	IP67
Тип изоляции обмотки	F
Температура окружающей среды, °С	от -30 до +70
Влажность окружающей среды	≤95% (25°C)
Взрывозащита корпуса	нет
Средний ресурс, циклов закрытие/открытие	5 000

3. УСТРОЙСТВО

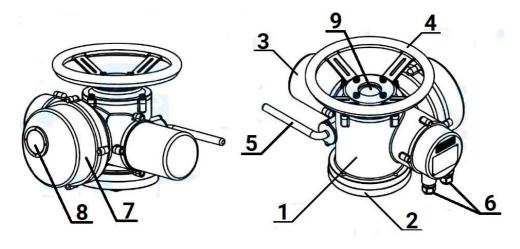


Рисунок 1 — Общий вид

Таблица 2. Основные детали

№ п/п	Наименование	
1	Корпус	
2	Присоединительный фланец	
3	Электродвигатель	
4	Штурвал	
5	Рычаг переключения ручного режима	
6	Кабельные вводы	
7	Крышка механизма управления	
8	Окно указателя положения	
9	Заглушка	

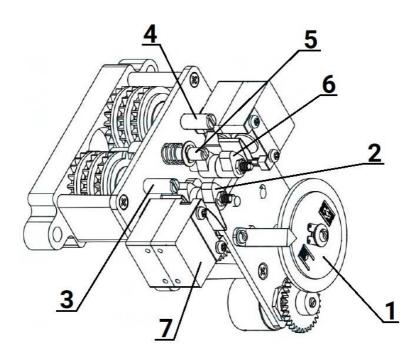


Рисунок 2 - Механизм управления

Таблица 3. Элементы механизма управления

Nº n/n	Наименование			
1	Указатель положения			
2	Кулачок закрытия			
3	Регулировочный винт закрытия			
4	Регулировочный винт открытия			
5	Втулка промежуточной шестерни			
6	Кулачок открытия			
7	Концевой выключатель			

3.1. Электропривод состоит из шести основных узлов:

- электродвигателя;
- редуктора, передающего усилие от электродвигателя на выходной вал;
- механизма управления крутящим моментом, ходом и регулировкой;
- механизма переключения с электрического на ручное управление (для перехода от электрического к ручному управлению необходимо потянуть рычаг переключения);
- маховика, служащего для открытия, закрытия арматуры при переходе на ручное управление;
- электрической части.

3.2. Схема устройства электропривода:

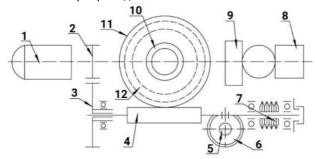


Рисунок 3 — Элементы электропривода

Таблица 4. Элементы электропривода

Nº n/n	Наименование	
1	Электродвигатель	
2	Мотор-редуктор	
3	Червячный редуктор	
4	Червяк	
5	Рукоятка	
6	Крутящий механизм	
7	Набор тарельчатых пружин	
8	Индикатор открытия	
9	Механизм перемещения	
10	Выходной вал	
11	Червячный редуктор	
12	Коническая передача	

3.3. Механизм управления крутящим моментом:



Рисунок 4 — Элементы механизма управления крутящим моментом

Таблица 5. Элементы механизма управления крутящим моментом

№ п/п	Наименование			
1	Микропереключатель			
2	Опорная пластина			
3	Заводная ручка			
4	Разделительный диск			
5	Регулировочный вал			

3.4. Механизм управления ходом:

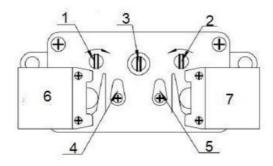


Рисунок 5 — Элементы механизма управления ходом

Таблица 6. Элементы механизма управления ходом

№ п/п	Наименование	
1	Регулировочный винт закрытия	
2	Регулировочный винт открытия	
3	Втулка промежуточной шестерни	
4	Кулачок закрытия	
5	Кулачок открытия	
6	Концевой выключатель закрытия	
7	Концевой выключатель открытия	

4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 7.1. Технические характеристики

	Максимальный	Частота вращения	Передаточное	
Модель	крутящий момент на	выходного вала,	отношение	Вес, кг
	выходном валу, Нм	об/мин	ручного привода	
VGD-005-220V	50			15,2
VGD-010-220V	100			15,8
VGD-015-220V	150			16,2
VGD-020-220V	200			24,2
VGD-030-220V	300			25,8
VGD-005-380V	50	18	1:1	15,2
VGD-010-380V	100	10	1.1	15,8
VGD-015-380V	150			16,2
VGD-020-380V	200			24,2
VGD-030-380V	300			25,8
VGD-045-380V	450			63,0
VGD-060-380V	600			65,2

Таблица 7.2. Технические характеристики

Модель	Номинальный ток, А	Мощность, кВт	Напряжение, В
VGD-005-220V	0,82	0,18	220
VGD-010-220V	1,14	0,25	220
VGD-015-220V	1,68	0,37	220
VGD-020-220V	1,68	0,37	220
VGD-030-220V	2,5	0,55	220
VGD-005-380V	0,45	0,12	380
VGD-010-380V	0,6	0,18	380
VGD-015-380V	0,85	0,25	380
VGD-020-380V	1,05	0,37	380
VGD-030-380V	1,3	0,55	380
VGD-045-380V	2,5	1,1	380
VGD-060-380V	3,2	1,5	380

5. ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

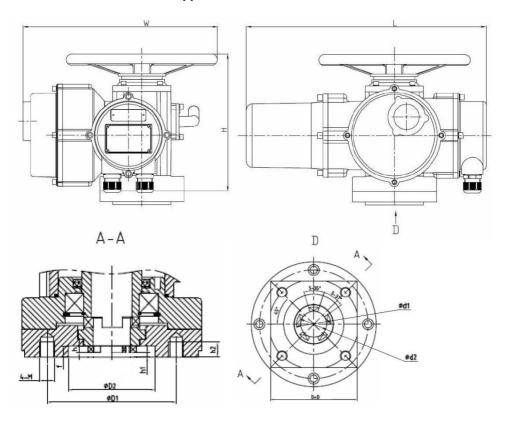


Рисунок 6 — Размеры

Таблица 8.1. Размерные характеристики

Модель	W, MM	Н, мм	L, мм	DxD, мм	D1, мм	D2, мм	Тип присоединения по ГОСТ 34287-2017 (ОСТ 26-07-763-73)
VGD-005-220V	334	258	411	100x100	104	70	тип АК (А)
VGD-010-220V	334	258	411	100x100	104	70	тип АК (A)
VGD-015-220V	334	258	411	100x100	104	70	тип АК (А)
VGD-020-220V	365	290	470	122x122	135	108	Б
VGD-030-220V	365	290	470	122x122	135	108	Б
VGD-005-380V	334	258	411	100x100	104	70	тип АК (А)
VGD-010-380V	334	258	411	100x100	104	70	тип АК (А)
VGD-015-380V	334	258	411	100x100	104	70	тип АК (А)
VGD-020-380V	365	290	470	122x122	135	108	Б
VGD-030-380V	365	290	470	122x122	135	108	Б
VGD-045-380V	433	337	564	200x200	220	155	В
VGD-060-380V	433	337	564	200x200	220	155	В

Таблица 8.2. Размерные характеристики

Модель	d1, мм	d2, мм	f, мм	h, мм	h1, мм	h2, мм	4-M
VGD-005-220V	32	44	8	5	3	18	4-M12
VGD-010-220V	32	44	8	5	3	18	4-M12
VGD-015-220V	32	44	8	5	3	18	4-M12
VGD-020-220V	45	57	15	8	7	22	4-M12
VGD-030-220V	45	57	15	8	7	22	4-M12
VGD-005-380V	32	44	8	5	3	18	4-M12
VGD-010-380V	32	44	8	5	3	18	4-M12
VGD-015-380V	32	44	8	5	3	18	4-M12
VGD-020-380V	45	57	15	8	7	22	4-M12
VGD-030-380V	45	57	15	8	7	22	4-M12
VGD-045-380V	70	84	22	11	11	28	4-M20
VGD-060-380V	70	84	22	11	11	28	4-M20

6. СХЕМА ПОДКЛЮЧЕНИЯ 220В

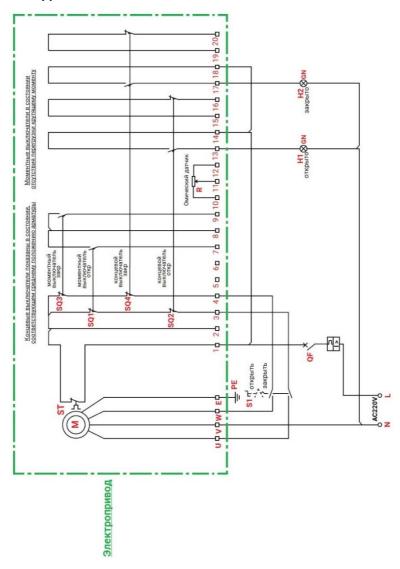


Рисунок 7 — Принципиальная схема подключения электропривода с однофазным электродвигателем 220B

7. СХЕМА ПОДКЛЮЧЕНИЯ 380В

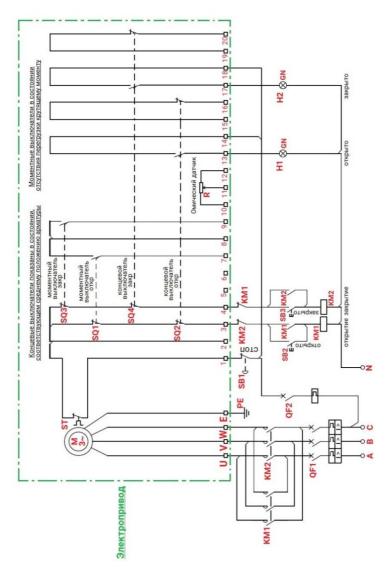


Рисунок 8 — Принципиальная схема подключения электропривода с трехфазным электродвигателем 380B

Условные обозначения:

- W1 соединительный кабель;
- РЕ клемма «РЕ»:
- Н3 лампа «ЗАКРЫТО»:
- Н2 лампа «ОТКРЫТО»:
- Н1 лампа «СЕТЬ»;
- КМ2 контактор «ЗАКРЫТИЕ»;
- SB1 кнопка управления «СТОП»;
- QF1 автоматический выключатель 3Р;
- QF2 автоматический выключатель 1Р;
- SB2 кнопка управления с подсветкой «ОТКРЫТИЕ»;
- SB3 кнопка управления с подсветкой «ЗАКРЫТИЕ»;
- КМ1 контактор «ОТКРЫТИЕ»;
- SQ1 моментный выключатель «ОТКРЫТО»;
- SQ2 – концевой выключатель «ОТКРЫТО»;
- SQ3 моментный выключатель «ЗАКРЫТО»;
- SQ4 концевой выключатель «ЗАКРЫТО»;
- R омический датчик;
- М электродвигатель;
- ST термореле электродвигателя.

8. УКАЗАНИЯ ПО МОНТАЖУ

- 8.1. Техника безопасности при монтаже и эксплуатации электроприводов должна соблюдаться в соответствии с ГОСТ 34610-2019.
- 8.2. К монтажу, эксплуатации и обслуживанию электроприводов допускается персонал, изучивший устройство электроприводов, правила техники безопасности и требования настоящего паспорта.
- 8.3. Расконсервацию электропривода следует проводить непосредственно перед его установкой на арматуру. Установочное положение электропривода любое.
- 8.4. Перед монтажом следует проверить внешний вид электропривода, а также легкость перемещения подвижных частей электропривода от рычага переключения режимов (в ручном режиме).
- 8.5. Монтаж электропривода производится непосредственно на запорную арматуру. При монтаже обратить внимание на правильное совмещение посадочного фланца электропривода и ответного посадочного фланца на исполнительном органе. Не допускается посадка «внатяг», люфты, зазоры при сопряжении электропривода и запорного органа. Это приводит к увеличению нагрузки на узлы и детали электропривода, ускоренному износу и быстрому выходу из строя электропривода.
- 8.6. Следует обратить внимание на соответствие выходного вала запорной арматуры и посадочного отверстия в выходном валу электропривода. Люфты не допускаются это приводит к быстрому износу деталей электропривода и запорной арматуры.

ВНИМАНИЕ! Запрещено подключение электродвигателя без внешнего блока управления напрямую к электросети.

8.7. После монтажа проверить:

- сопротивление изоляции электрических цепей относительно корпуса при температуре 20°С и влажности до 80% должно быть не менее 20 МОм;
- сопротивление заземления, которое должно быть не более 0,1 Ом;
- работу электропривода в ручном режиме: вращая ручку рычага переключения режимов убедиться в плавности хода затвора арматуры;
- работу привода от электродвигателя: настройку на открытие, закрытие и четкость срабатывания ограничителя хода выходного вала (для чего делают 2-3 цикла ОТКРЫТО – ЗАКРЫТО).

9. ВВОД В ЭКСПЛУАТАЦИЮ

9. 1. Настройка механизма управления крутящим моментом

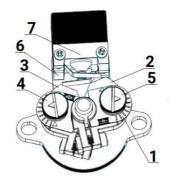


Рисунок 9 — Муфта ограничения крутящих моментов

Таблица 9. Элементы муфты ограничения крутящим моментов

№ п/п	Наименование	
1	Шкала	
2	Опорная пластина	
3	Опорная пластина	
4	Регулировочный эксцентрик (открытие)	
5	Регулировочный эксцентрик (закрытие)	
6	Моментный выключатель SQ1(TC) – открытие	
7	Моментный выключатель SQ3(TO) – закрытие	

- 9.1.1. Настройку механизма управления крутящим моментом следует выполнять при отсутствии давления в системе и проверив отключение потенциометра на индикаторе положения (для этого нужно ослабить установочный винт шестерни на валу потенциометра, чтобы он вышел из зацепления):
 - отрегулировать момент закрытия (начиная с небольшого значения крутящего момента, постепенно увеличивать значение крутящего момента до тех пор, пока клапан не будет плотно закрыт;
 - после подачи давления в систему проверить герметичность закрытия арматуры (при отсутствии герметичности следует увеличить значение крутящего момента до значения, обеспечивающего полное открытие и герметичность при закрытии затвора арматуры).

9.2. Регулировка механизма управления ходом

9.2.1. Регулировка хода закрытия:

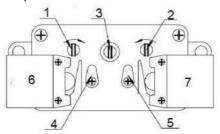


Рисунок 9 — Регулировка хода закрытия

- закрыть арматуру вручную;
- отсоединить механизм управления ходом (с помощью отвертки надавить на втулку промежуточной шестерни (3) в механизме управления ходом и повернуть ее на 90 градусов, чтобы отделить ведущую шестерню от шестерни противодействия;
- предварительно отрегулировать ход закрытия (с помощью отвертки повернуть регулировочный вал закрытия (1) в направлении стрелки до тех пор, пока кулачок закрытия (4) не нажмет на прижимную пластину пружины, чтобы сработал концевой выключатель закрытия (6);
- нажать и повернуть втулку промежуточной шестерни (3), чтобы ведущая шестерня и шестерни с обеих сторон правильно вошли в зацепление (отверткой немного повернуть регулировочный вал влево-вправо);
- открыть затвор на несколько оборотов, а затем закрыть и в зависимости от того, соответствует ли ход закрытия требованиям скорректировать ход закрытия.

9.2.2. Регулировка хода открытия:

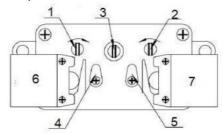


Рисунок 10 — Регулировка хода открытия

- открыть арматуру вручную (обратить внимание, что в это время механизм управления ходом должен быть включен, иначе регулировка хода закрытия нарушится);
- отсоединить механизм управления ходом (с помощью отвертки надавить на втулку промежуточной шестерни (3) в механизме управления ходом и повернуть ее на 90 градусов, чтобы отделить ведущую шестерню от шестерни противодействия;
- предварительно отрегулировать ход открытия (с помощью отвертки повернуть регулировочный вал открытия (2) в направлении стрелки до тех пор, пока кулачок открытия (5) не нажмет на прижимную пластину пружины, чтобы сработал концевой выключатель открытия (7);
- нажать и повернуть втулку промежуточной шестерни (3), чтобы ведущая шестерня и шестерни с обеих сторон правильно вошли в зацепление (отверткой немного повернуть регулировочный вал влево-вправо);
- закрыть затвор на несколько оборотов, а затем открыть и в зависимости от того, соответствует ли ход открытия требованиям, скорректировать ход открытия.

9.3. Настройка указателя положения

9.3.1. Регулировку указателя положения арматуры следует производить после завершения настройки концевых выключателей.

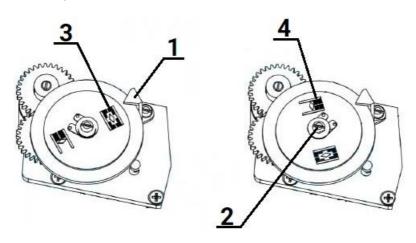


Рисунок 11 — Настройка указателя положения

- 9.3.2. В зависимости от требуемого количества оборотов выходного вала, введите в зацепление шестерню с фиксатором с зубчатым колесом и зафиксируйте ее.
- 9.3.3. С помощью штурвала установите арматуру в положение «Закрыто».
- 9.3.4. Ослабьте винт (2) и поворотом диска положения «Закрыто» (4) совместите метку с указателем (1) расположенным на крышке электропривода. Затяните винт (2).
- 9.3.5. С помощью штурвала установите арматуру в положение «Открыто».
- 9.3.6. Ослабьте винт (2). Удерживая от поворота диск положения «Закрыто» (4), поворотом совместите метку диска положения «Открыто» (3) с указателем (1). Затяните винт (2).

9.4. Пробный пуск

9.4.1. Пробный пуск электропривода следует производить только после выполнения пунктов 9.1.–9.3. настоящего паспорта.

ВНИМАНИЕ! Неправильное направление вращения влечет за собой повреждение арматуры. Если направление вращения неверное, следует немедленно выключить электропривод.

- 9.4.2. Проверка направления вращения выполняется в следующем порядке:
 - 9.4.2.1. Установить арматуру в среднее положение в режиме ручного управления.
 - 9.4.2.2. Запустить кратковременно электропривод в направлении «Закрыть» и следить по указателю положения за направлением вращения. При достижении конечного положения выключить электропривод.
- 9.4.3. Направление вращение верное, если выходной вал движется в направлении закрытия, а указатель положения вращается по часовой стрелке.
- 9.4.4. Если направление вращение неверное, следует сразу выключить электропривод. У электроприводов с однофазным электродвигателем следует проверить правильность подключения цепей питания. У электроприводов с трехфазным электродвигателем следует поменять местами два любых проводника на клеммах U, V, W клеммника электропривода.

9.5. Проверка концевых выключателей

- 9.5.1. По очереди доведите электропривод до конечных положений в ручном режиме.
- 9.5.2. Концевые выключатели настроены правильно, если:
 - выключатель SQ2(P0) срабатывает в конечном положении «Открыто»;
 - выключатель SQ4(PC) срабатывает в конечном положении «Закрыто»;
 - после поворота штурвала назад выключатель снова разблокирует контакты.

10. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

- 10.1. Обслуживающий персонал допускается к обслуживанию электропривода только после прохождения соответствующего инструктажа по технике безопасности.
- 10.2. При обслуживании электропривода должны соблюдаться следующие правила:
 - обслуживание электропривода должно вестись в соответствии с установленными «Правилами технической эксплуатации электроустановок потребителей»;
 - место установки электропривода должно иметь достаточную освещенность;
 - корпус электропривода должен быть заземлен;
 - монтажные работы с электроприводами должны проводиться только исправным инструментом;
 - приступая к профилактической работе, необходимо убедиться, что электропривод отключен от электросети.
- 10.3. Во время эксплуатации необходимо проводить периодические осмотры электропривода в сроки, установленные графиком, в зависимости от режима работы привода, но не реже одного раза в три месяца. При осмотре обратить внимание на: корпуса. наличие всех крепежных деталей ИΧ элементов. надписей. устройств, предупредительных заземляющих заглушек неиспользованных вводных устройствах, уплотнения вводных При профилактическом осмотре произвести измерение сопротивления изоляции.
- 10.4. Замену смазки в редукторе следует производить через 4-6 лет (в зависимости от интенсивности эксплуатации). При замене смазки следует также заменить резиновые уплотнительные кольца.

11. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Таблица 9. Неисправности и способы устранения

Неисправность	Возможная причина	Меры по устранению
	1.Неисправна силовая	1.Проверить силовую цепь
При нажатии пусковых	электрическая цепь или	и магнитный пускатель и
кнопок электропривод не	магнитный пускатель.	устранить неисправность.
работает.	2.Нет электропитания на	2.Подать напряжение на
	пульте управления.	пульт управления
	1.Разрегулировались	1.Отрегулировать положения
При достижении затвором	настроенные положения	конечных или муфтовых
арматуры положения	конечных или муфтовых	микровыключателей
ЗАКРЫТО или ОТКРЫТО	микровыключателей закрытия	закрытия (открытия) и
электродвигатель не	(открытия).	надежно закрепить их.
отключается.	2.Отказал конечный или	2.Заменить конечный или
отключается.	муфтовый микровыключатель	муфтовый микровыключатель
	закрытия (открытия).	закрытия (открытия).
		Выключить электропривод
Do provid vono		и проверить пуск привода в
Во время хода	Заклинивание штока	том направлении, в котором
на закрытие/ открытие	затвора арматуры или	произошло заклинивание.
арматуры электропривод	подвижных частей	Если при повторном пуске
остановился и загорелась	электропривода.	произойдет остановка
лампа «Перегрузка».		электропривода, то надо выявить и
		устранить неисправность.
		1.Заменить лампы.
	1.Перегорели лампы.	2.Отрегулировать контакты конечных
В крайних положениях	2.Разрегулировались	микровыключателей и
затвора арматуры не	конечные микровыключатели.	надежно закрепить их.
горят лампы ЗАКРЫТО	3.Отсутствует электропитание	3.Проверить цепь индикации
или ОТКРЫТО.	цепи индикации	электроприводом, устранить
	электропривода.	неисправности и подать
		электропитание в цепь индикации.
	1. Короткое	
	замыкание между проводами	1. Найти место замыкания
Одновременно горят	конечных	электропривода и устранить
лампы ЗАКРЫТО и	микровыключателей.	неисправность.
ОТКРЫТО.	2. Неправильная	2. Произвести точную настройку
	настройка конечных	конечных микровыключателей.
	микровыключателей.	

Продолжение таблицы 9

затвора арматуры. арматуры попали твердые арматуры. 3. Настроить конечные 3. Не точно настроены микровыключатели.	Неполное закрытие затвора арматуры.		
---	--	--	--

12. УСЛОВИЯ ТРАНСПОРТИРОВКИ И ХРАНЕНИЯ

- 12.1. Хранение электроприводов следует осуществлять по условиям хранения 3 ГОСТ 15150-69.
- 12.2. Транспортирование электроприводов осуществляется в упаковке завода-изготовителя по условиям хранения 5 ГОСТ 15150-69.

13. УТИЛИЗАЦИЯ

13.1 Утилизация изделия производится в соответствии с установленным у потребителя порядком, разработанным в соответствии с Законами РФ № 122-Ф3 от 22 августа 2004г. «Об охране атмосферного воздуха», № 15-Ф3 от 10 января 2003 г. «Об отходах производства и потребления», № 52-Ф3 от 30 марта 1999 г. «О санитарноэпидемиологическом благополучии населения», а также другими российскими и региональными нормами, актами, правилами, распоряжениями, принятыми во исполнение указанных законов.

14. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 14.1. Гарантийный срок 12 месяцев с момента ввода в эксплуатацию, но не более 18 месяцев со дня продажи.
- 14.2. Гарантия распространяется на оборудование, установленное и используемое в соответствии с инструкциями по установке и техническими характеристиками изделия, описанными в данном паспорте.
- 14.3. Изготовитель гарантирует соответствие изделия требованиям безопасности, при условии соблюдения потребителем правил транспортировки, хранения, монтажа и эксплуатации.
- 14.4. Гарантия распространяется на все дефекты, возникшие по вине заводаизготовителя
- 14.5. Гарантия не распространяется:
 - на части и материалы изделия подверженные износу;
 - на случаи повреждения, возникшие вследствие:
 - внесения изменения в оригинальную конструкцию изделия;
 - нарушения общих монтажных рекомендаций;
 - неисправностей, возникших при неправильном обслуживании и складировании;
 - неправильной эксплуатации и применения оборудования.

15. УСЛОВИЯ ГАРАНТИЙНОГО ОБСЛУЖИВАНИЯ

- 15.1. Претензии к качеству товара могут быть предъявлены в течение гарантийного срока.
- 15.2. Неисправные изделия в течение гарантийного срока ремонтируются или обмениваются на новые бесплатно. Решение о замене или ремонте изделия принимает 000 "ДН.ру". Замененное изделие или его части, полученные в результате ремонта, переходят в собственность 000 "ДН.ру".
- 15.3. Затраты, связанные с демонтажем, монтажом и транспортировкой неисправного изделия в период гарантийного срока Покупателю не возмещаются.
- 15.4. В случае необоснованности претензии, затраты на диагностику и экспертизу изделия оплачиваются Покупателем.
- 15.5. Изделия принимаются в гарантийный ремонт (а также при возврате) полностью укомплектованными.

ГАРАНТИЙНЫЙ ТАЛОН №____

№ п/п	Наименование	Заводской номер	Кол-во

Название и адр	ес торгующей организации	
 Дата продажи	Подпись	продавца
Штамп или печ	ать торгующей организации	Штамп о приемке
С условиями га	рантии <u>согласен:</u>	
Покупатель Гарантийный с месяцев со дня		(подпись) вода в эксплуатацию, но не более 18
обращаться в О дом 10Б, стр. 3	000 "ДН.ру" по адресу : 117403, Ро помещ. 19. Эл.адрес: <u>info@dn.ru</u> .	ций и претензий к качеству изделий ссия, г. Москва, проезд Востряковский, а, покупатель предъявляет следующие
	контактные телефоны; название и адрес организации,	И.О. покупателя, фактический адрес,
3. Акт выполне	основные параметры системы, краткое описание дефекта. идтверждающий покупку изделия нных работ по монтажу изделия аполненный гарантийный талон.	(накладная, квитанция)
Отметка о возв	рате или обмене товара	
Лата: « »	202 г Полпись	

