

Благодарим вас за доверие к продукции нашей компании

© МЕГЕОН. Все права защищены.

СОДЕРЖАНИЕ

Условные обозначения, стандарты	3
Специальное заявление	3
Введение, особенности	3
Советы по безопасности	4
Перед первым использованием	5
Внешний вид и органы управления	5
Структура меню	7
Описание пунктов меню	11
Руководство по эксплуатации	18
Типовые неисправности	
Технические характеристики	
Обслуживание	
Меры предосторожности	
Особое заявление	
Советы по эксплуатации аккумулятора	
Уход и хранение	
Срок службы	
Гарантийное обслуживание	
Комплект поставки	
Паспорт	45

🔵 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

ПОВРЕЖДЕНИЕ

ПРИБОРА

внимание

СПЕЦИАЛЬНОЕ ЗАЯВЛЕНИЕ

Компания оставляет за собой право без специального уведомления, не ухудшая потребительских свойств прибора изменить: дизайн, технические характеристики, комплектацию, настоящее руководство. Данное руководство содержит только информацию об использовании, предупреждающие сообщения, правила техники безопасности и меры предосторожности при использовании соответствующих измерительных функций этого прибора и актуально на момент публикации.

ВВЕДЕНИЕ

МЕГЕОН 29120 — это цифровой ультразвуковой дефектоскоп предназначен для выявления дефектов методом неразрушающего контроля. Прибор использует ультразвуковые колебания которые проникают в исследуемый объект и проходя через него или отражаясь от дефектов или поверхностей возвращаются в датчик в виде отражённого эхосигнала. Последующая обработка эхосигнала позволяет вычислить время его прохождения через объект, что в свою очередь при использовании констант позволяет вычислить толщину объекта или расстояние до дефекта. Отображение эхосигнала на дисплее, возможность выбирать необходимый из них, для проведения необходимых измерений. В приборе предусмотрены возможности для допусковых измерений. Возможность использования огромного количества специализированных датчиков, которые были предназначены для отечественных ультразвуковых дефектоскопов. Высокая чувствительность, автономное питание, небольшой вес и размеры прибора позволяют использовать его там, где невозможно использовать другие аналогичные приборы.

ОСОБЕННОСТИ

- Высокая чувствительность;
- Цветной графический дисплей;
- Несколько различных цветов отображения эхограммы;
- 4 типа зондирующих импульсов;
- Функция линейного подавления до 80% от высоты дисплея;
- Функция замораживания эхограммы;
- 5 типов поддерживаемых датчиков;

• Калибровка датчиков по испытательным блокам; Настройка стробов с возможностью сигнализации превышения; Создание кривых DAC и AVG по узловым точкам; 10 предустановленных, фиксированных уровней, соответствующих стандартам, накладываемых на созданную кривую DAC; Наложение на созданную кривую DAC 5 настраиваемых уровней;

- Настройка кривой AVG;

важно

РЕКОМЕНДАЦИЯ

- Гибкая настройка стробов;
- Допусковые измерения;
- Запись и просмотр видео эхограммы на приборе;
- Сохранение и просмотр эхограммы;
- 500 настраиваемых профилей измерения;
- Память пиковых значений;
- Встроенный файловый менеджер;
- Работа с USB-накопителем (перенос данных);
- ПО для просмотра видео, эхограмм, создания отчётов;
- Li–Po аккумулятор для автономной работы;
- Индикатор заряда аккумулятора;
- Кейс для транспортировки и хранения;

• Широкий ассортимент испытательных блоков для калибровки и настройки (в комплект не входят);

Возможность использования датчиков от отечественных дефектоскопов;

• 2 датчика в комплекте.

СОВЕТЫ ПО БЕЗОПАСНОСТИ:

Конструкция прибора соответствует всем необходимым требованиям, но по соображениям безопасности для исключения случайного травмирования, повреждения прибора и аксессуаров, а также правильного и безопасного использования прибора соблюдайте следующие правила:

• Не работайте с прибором в условиях: сильной запылённости, повышенной влажности, магнитных полей, влажными или скользкими руками.

 Защитите прибор от попадания внутрь или на корпус прибора: влаги, пыли, масла, растворителей, и газов вызывающих коррозию. Поддерживайте поверхности прибора в чистом и сухом виде.

• Если в прибор попала влага или жидкость немедленно выключите прибор, извлеките аккумулятор и обратитесь к дилеру или в сервисный центр.

• Если в приборе образовался конденсат (что может быть вызвано резкой сменой температуры окружающего воздуха) — необходимо не включая прибор, (извлечь аккумулятор) и после стабилизации температуры, выдержать его без упаковки не менее З часов.

• Не проводите измерений на движущихся объектах (даже с маленькой скоростью).

• Перед измерением убедитесь, что соединительные провода надежно подключены к прибору и датчику.

• Если у прибора отклонения в функционировании — не пользуйтесь им, это может представлять косвенные опасности, выключите его и обратитесь в сервисный центр.

• Выключайте прибор при длительных перерывах между работой, это сэкономит заряд аккумулятора.

• Эксплуатация с повреждённым корпусом, соединительными проводами и датчиком запрещена. Время от времени проверяйте корпус прибора на предмет трещин, а соединительные провода и датчик(и) на предмет повреждения изоляции и рабочих поверхностей. Повреждение рабочей поверхности датчика может вызвать отказ или неправильную его работу. В случае обнаружения этих и им подобных дефектов обратитесь к дилеру или в сервисный центр.

• Не разбирайте, и не пытайтесь ремонтировать прибор самостоятельно или вносить изменения в его конструкцию — это приведёт к лишению гарантии и возможной его неработоспособности.

• Используйте прибор только по прямому назначению.

• Зарядите аккумулятор, если индикатор заряда показывает 25% или менее.

• Во избежание повреждения аккумулятора и контроллера заряда ЗАПРЕЩЕНО использовать другие зарядные устройства.

• ПЕРЕД ПЕРВЫМ ИСПОЛЬЗОВАНИЕМ

После приобретения прибора, рекомендуем проверить его, выполнив следующие шаги:

• Проверьте прибор и упаковку на отсутствие механических и других видов повреждений, вызванных транспортировкой.

• Если упаковка повреждена, сохраните её до тех пор, пока прибор и аксессуары не пройдут полную проверку.

• Убедитесь, что корпус прибора не имеет трещин, сколов, вмятин, а провода и датчики не повреждены.

• Проверьте комплектацию прибора.

Если обнаружены дефекты и недостатки, перечисленные выше или комплектация не полная — верните прибор продавцу.

Пожалуйста, внимательно прочитайте настоящее руководство перед первым использованием и храните его вместе с прибором для быстрого разрешения возникающих вопросов во время работы.

🔵 ВНЕШНИЙ ВИД И ОРГАНЫ УПРАВЛЕНИЯ

Рис. 1. Внешний вид

- 1) Гнездо «Т» ; Пездо «R»;
- ЭДисплей;
- 4 Клавиатура;
- 5 Энкодер;
- 6 Гнездо USB (Тип А);
- 7 Гнездо для подключения зарядного устройства;
- В Подставка;
- Отсек для аккумулятора;
- 10 Ремень для удержания «одна рука»;
- 11 Индикатор зарядки.

• КРАТКОЕ ОПИСАНИЕ КЛАВИАТУРЫ (см. Рис. 2.)

uc. 2. ł	лавиатура
----------	-----------

	a	Назначение
1	(F1 F6)	Кнопки выбора пунктов меню 2 уровня
2	УСИЛЕНИЕ	Кнопка активации функции ручного изменения усиления
B	СТРОБ	Кнопка перехода в меню настройки стробов (1–5)
4		Кнопки навигации по меню (уровни 2–й и 3–й)
5	OK	Кнопка подтверждения / переключение параметров меню 4-со уровня
6	(ДИАПАЗОН)	Переход в меню настройки диапазона измерения (1–1)
7	МЕНЮ	Кнопка выбора меню 1-го уровня
8	ПРОФИЛЬ	Кнопка перехода в меню работы с профилями (3–1)
9	ДАТЧИК)	Переход в меню настройки параметров датчика (1–2)
10		Переход в меню калибровки датчиков (2–1)
1	КРИВЫЕ	Переход в меню настройки кривых (2–3)
12	(ПАМЯТЬ ПИКОВ)	Включение функции отображения на дисплее максимальных значений (пиков)
B	АРУ	Регулировка усиления до заранее установленного уровня на дисплее
14	СНИМОК	Сохранение эхограммы в виде файла
15	(()	Включение и выключение прибора

КРАТКОЕ ОПИСАНИЕ ДИСПЛЕЯ

Дисплей условно разбит на 8 областей (см. Рис. 3.). Здесь приведено их название и краткое назначение. Подробное описание каждой области будет приведено ниже.

- 1 Область отображения измеренных значений;
- Область отображения
- установленных параметров;
- Вабочая область;
- Шкала уровня сигнала относительно высоты дисплея;
- (5) Шкала расстояния;
- 6 Область отображения системных индикаторов;
- Область меню (уровень 2);
- В Область меню (уровни 3,4).

НАЗНАЧЕНИЕ ОБЛАСТЕЙ ДИСПЛЕЯ

Область 1 — состоит из 9 индикаторов (см. Рис.3.):

ПР — № включённого профиля;

dB — установленный коэффициент усиления сигнала; **%** — Уровень самого высокого эхосигнала с пределах строба, относительно высоты дисплея;

➡ — Расстояние до дефекта по поверхности L (только для наклонных датчиков); ↓— Глубина D (наклонный датчик) / толщина Т или глубина D (прямой датчик); • Расстояние по пути звука S (наклонный датчик); К — Установленный коэффициент наклона ПЭП; △— Коррекция усиления прибором (требует создания соответствующих значений

кривой DAC);

Ø — Размер эквивалента (требует создания кривой AVG).

Область 2 — состоит из 6 индикаторов установленных параметров (см. Рис.3.): **Диапазон** — Диапазон отображения на дисплее; Скорость звука — Скорость звука в исследуемом материале; Начало отсчёта — Точка начала отсчёта (как правило устанавливается 0); Толщина детали — Толщина измеряемой детали или объекта; **Датчик** — Установленный тип датчика; **Частота повт.** — Частота повторения зондирующих импульсов.

Область 3 — рабочая (см. Рис. 3.): (отображение эхограмм, стробов, кривых).

Область 4 — линейка уровня (см. Рис. 3.): Уровень эхосигнала относительно высоты дисплея.

Область 5 — линейка расстояния (см. Рис. 3.):

Для прямого датчика её разметка отображает установленный диапазон по пути звука, для наклонного диапазон по пути звука или глубину соответствующую пути звука под углом к ней (зависит от установленного угла датчика).

Область 6 — Системные индикаторы (см. Рис. 3.):

Индикатор шага перестройки, подключение USB-накопителя, индикатор разряда аккумулятора.

Область 7 — Меню (уровень 2), (см. Рис. 3.):

Область 8 — Меню (уровень 3), (см. Рис. 3.), где: Наклон пластины — название параметра: 0,0 ° — значение;

> — указывает, что в данном параметре, есть дополнительные настройки (уровень 4); * — указывает что в данном № ячейки сохранены данные, красный цвет № указы-

вает на отсутствие сохранённых данных.

СТРУКТУРА МЕНЮ

Управление прибором осуществляется при помощи локальной клавиатуры и энкодера. Меню прибора имеет 17 пунктов (уровень 2), организованных в 3 страницы (уровень 1). Каждый из 17 пунктов имеет от 2 до 4 настроек (уровень 3), некоторые настройки имеют от 2 до 4 параметров (уровень 4). Далее в тексте, для более быстрого поиска необходимого пункта меню в описании будет приводится его расположение в виде цифровой последовательности, например: (1–2–2–3), это значит что данный пункт находится на 1-й странице (ур.1), во 2-м пункте (ур.2),

Ввиду однозначной индикации не нуждаются в более развёрнутом описании.

2–й параметр (ур.3), 3–я настройка (ур.4). Искомой настройкой будет «Длина пластины». Все отсчёты ведутся слева на право, сверху вниз, по порядку выбора (см. Табл. 1).

Таблица 1 — Структура меню.

У

ровень 1	Уровень 2	Уровень З	Уровень 4	Описание
		Лиадароц (1, 1, 1)		Диапазон
		диапазон (1–1–1)		сканирования
Основные настройки (1–1)		Скорость звука (1–1–2)		Скорость звука
		Начало отсчёта (1–1–3)		Начало отсчёта
		Толщина детали (1–1–4)		Толщина детали
		Наклон пластины	Наклон пластины (1–2–1–1)	Угол наклона пластины
		(1–2–1)	Частота датчика (1–2–1–2)	Рабочая частота датчика
			Передняя кромка (1–2–2–1)	Передняя кромка датчика
	Настройки	Передняя кромка	Диаметр пластины (1–2–2–2)	Диаметр пластины прямого датчика
	ματαικά (τ-Ζ)	(1–2–2)	Длина пластины (1–2–2–3)	Длина пластины наклонного датчика
-			Ширина пластины (1–2–2–4)	Ширина пластины наклонного датчика
Ца		Задержка		Задержка в призме
I I I		в призме (1–2–3)		датчика
edı		Датчик (1–2–4)		Тип датчика
Ċ		Рейтинг AWS		Рейтинг проверки
		(1-3-1)		сварных швов
	Дополнит.	Сигнализация		Сигнализация по
	настройки	(I-5-2)		Превышению порога
	(1–3)			порог среза
				Частота повторения
		(1–3–4)		импульсов
		Заливка эхо-		Заливка
		граммы (1–4–1)		эхограммы
	Вспомогат.	Заморозка (1–4–2)		Замораживание
	настройки	Цвет эхограммы		Цвет эхограммы на
(1	(1–4)	(1–4–3)		дисплее
		Зондирующий импульс (1–4–4)		Тип зондирующих им- пульсов
		Начало (1–5–1)		Начало строба А
	CTROF A	Ширина (1–5–2)		Ширина строба А
		Высота (1–5–3)		Высота строба А
	()	Режим стробов		Режим
		(1–5–4)		стробов А и В

Уровень 1	Уровень 2	Уровень З	Уровень 4	Описание
-		Начало (1–6–1)		Начало строба В
Ца		Ширина (1–6–2)		Ширина строба В
L H		Высота (1–6–3)		Высота строба В
2dr	(1-0)	Начало		Нижний предел
Ŭ		усиления (1–6–4)		усиления
		Калибровка		Калибровка прямого
		прямого (2–1–1)		датчика
		Толщина		Толщина
	Калибровка	эталона (2–1–2)		испытательного блока
	прямого (2–1)	Старт (2–1–3)		запуск калибровки
		Настройка		Совмещение строба
		(2–1–4)		и эхосигнала
			Калибровка	
			наклонного	Калибровка
			(2-2-1-1)	наклонного датчика
		Калибровка	Размер эталона 1	Установка размера
		наклонного	(2-2-1-2)	испытательного
		(2–2–1)		блока Т
			Размер эталона 2	установка размера
			(2–2–1–3)	блока 2
			Скорость звука	Измерение
N	2	Скорость звука (2–2–2)	(2-2-2-1)	скорости звука
Ца	Калибровка		Задержка в призме (2–2–2–2)	Измерение
Нан	наклонного			задержки
ed 1	(2–2)			в призме датчика
Ú			Передняя кромка	передняя
			(2-2-2-3)	Кромка да гчика Установка
			отверстия	глубины центра
			(2-2-3-1)	отверстия
		плуо. центра	Диаметр	Vстановка диаметра
		(2-2-3)	отверстия	отверстия
			(2-2-3-2)	
			Наклон пластины	Измерение угла
		Настройка	(2-2-3-3)	Совмешение строба
		(2-2-4)		и эхосигнала
		Кривая DAC		Включение / выбор
		(2-3-1)		типа кривой DAC
	Кривая	Узловая точка (2–3–2)		Узловые точки
	DAC (2-3)	Настройка / созд.		Смещение строба /
		точки (2-3-3)		создание точки
		Создание DAC		Создание
		(2-3-4)		кривои

Уровень 1	Уровень 2	Уровень З	Уровень 4	Описание
	Настройка	Уровень Брака (2-4-1)		Браковочный уровень
		Уровень Контроля (2–4–2)		Контрольный уровень
DAC	DAC (2–4)	Уровень Оценки (2–4–3)		Оценочный уровень
		Выбор стандарта (2–4–4)		Выбор стандарта / настройка
la 2		Кривая AVG (2–5–1)		Включение кривой AVG
раниг	Кривая	Тип отражателя (2–5–2)		Выбор типа отражателя
CTP	AVG (2–5)	Калибровка AVG (2–5–3)		Калибровка кривой
		Настройка (2–5–4)		Совмещение строба и эхосигнала
	Настройка	Настройка кривой (2–6–1)		Установка эквивалентного значения
	AVG (2–6)	Размер эквивалента (2–6–2)		Отображение / скры- тие эквивалента
Профиль (3–1)		Профиль № (3–1–1)		Установка / выбор № профиля
	Сохранить (3–1–2)		Сохранение профиля	
	(3–1)	Удалить или нет (3–1–3)		Удаление выбранного профиля
		Удалить все профили (3–1–4)		Удаление всех профи- лей
			Профиль (3–2–1–1)	Список сохранённых файлов профилей
		ก ่านี้ สุดกุม เชื่	Эхограмма	Список сохранённых
		Фаиловыи	(3–2–1–2)	файлов эхограмм
n a	C	менеджер (3–2–1)	Видео (3–2–1–3)	Список сохранённых файлов видео
Ц			Внешний USB	Список сохранённых
ан	(3-2)		(3-2-1-4)	файлов профилей
Стр		Подсветка (3–2–2)		Регулировка подсветки
		(3 - 2 - 2)		Неиспользуется
		Установка APV		Установка
		(3–2–4)		уровня АРУ
		Снимок № (3–3–1)		Установка / выбор № эхограммы
		Просмотр эхо-		Открыть сохранённую
	Эхограмма	граммы (3–3–2)		эхограмму
	(J-J)	Сохранить (3–3–3)		Сохранить в выбранной ячейке
		Удалить или нет		Удалить выбранную
		(3-3-4)		эхограмму

Уровень 1	Уровень 2	Уровень З	Уровень 4	Описание
		Запись № (3-4-1)		Установка ∕ выбор № видео
	Bugoo (3_/1)	Начало записи (3–4–2)		Начать запись видео
	Бидео (5-4)	Остановка записи (3–4–3)		Остановить запись
ta 3		Просмотр записи (3-4-4)		Просмотреть запись
анип		Скорость сканиро- вания (3–5–1–1)	Установка скорости развёртки	
Стр		Развёртка В (3–5–1)	Сканирование (3–5–1–2)	Запуск / остановка развёртки
	дополнит.		Очистка (3–5–1–3)	Очистка области
	(3_5)		Выход (3–5–1–4)	Выход
		Дно детали		Отображение
		(3-5-2)		дна детали
		Линейка (3–5–3)		Переключение разметки линейки
	·		N.	

Выбор страницы меню (уровень 1) осуществляется кнопкой (МЕНЮ). Выбор пункта меню (уровень 2) осуществляется соответствующей кнопкой (F1... F6) или кнопками () и).

Выбор настройки (уровень 3) осуществляется кнопками 🔊 и 🔽. Выбор параметра (уровень 4) / подтверждение действия внутри настройки кнопкой (ОК).

Изменение настройки — вращением энкодера. Изменение шага настройки — нажмите на ручку энкодера, выберите значение поворотом энкодера, подтвердите нажатием. Отображение текущего шага перестройки в окне 6 дисплея.

Некоторые настройки доступны после выбора настройки соответствующей кнопкой. Некоторые кнопки осуществляют быстрый переход в соответствующее меню для настройки параметра.

Некоторые кнопки напрямую выполняют соответствующее действие.

ОПИСАНИЕ ПУНКТОВ МЕНЮ

• МЕНЮ «ОСНОВНЫЕ НАСТРОЙКИ» (1–1) (см. табл. 2)

Таблица 2 — Основные настройки.

Пункт меню	Описание	Диапазон
Диапазон (1–1–1)	Диапазон отображения по временной оси на дисплее	159999 мм, шаг 1,050 мм
Скорость звука (1–1–2)	Скорость распространения звука в материале ¹	1009999 м/с, шаг 1,050 м/с
Начало отсчёта (1–1–3)	Точка начала отсчёта²	-7 мм9984 мм, шаг 150 мм
Толщина детали (1–1–4)	Толщина детали (объекта измерения) ^з	1 мм9999,0 мм, шаг 150 мм

Пояснения к таблице 2:

¹ — Можно установить скорость звука вручную, если скорость неизвестна, то можно взять примерную из таблицы ниже. В зависимости от марки и химического состава материала скорость звука в нём может значительно отличаться от приведённого значения. Некоторые результаты измерений, прибора, рассчитыва-

ются на основе этого значения. При неправильно установленной скорости звука эти значения будут вычислены с ошибкой. Неправильно установленную скорость звука можно компенсировать изменением задержки в призме.

Продольная волна в меди	4700 м/с
Продольная волна в алюминии	6300 м/с
Продольная волна в стали	5900 м/с
Продольная волна в оргстекле	2730 м/с
Поперечная волна в меди	2260 м/с
Поперечная волна в алюминии	3080 м/с
Поперечная волна в стали	3230 м/с

² — Точку начала отсчёта можно отрегулировать так, чтобы она находилась на поверхности измеряемой детали или на определенной глубине внутри. Если отсчёт должен начинаться с поверхности детали, то параметр должен быть установлен на «О мм».

³ — Установите толщину измеряемой детали. Этот параметр необходим для измерения некоторых параметров при работе с наклонным датчиком. При неправильной установке этого параметра точность измерения этих параметров будет ошибочной.

• МЕНЮ «НАСТРОЙКИ ДАТЧИКА» (1–2) (см. табл. 3)

Таблица 3 — Настройки датчика.

Пункт меню	Описание	Диапазон
Наклон пластины (1–2–1–1)	Угол наклона пластины ¹	0 84,2° (К = 0 9,84), шаг 0,1°
Частота датчика (1–2–1–2)	Рабочая частота датчика	0,5 20 МГц, шаг 0,1 МГц
Передняя кромка (1–2–2– 1)	Передняя кромка датчика (стрела ПЭП)	0 100 мм, шаг 0,1 мм
Диаметр пластины (1–2–2–2)	Диаметр пластины прямого датчика	0,2 90 мм, шаг 0,1 мм
Длина пластины (1–2–2–3)	Длина пластины наклонного датчика	0,2 90 мм, шаг 0,1 мм
Ширина пластины (1–2–2–4)	Ширина пластины наклонного датчика	0,2 90 мм, шаг 0,1 мм
Задержка в призме (1–2–3)	Задержка в призме датчика²	0,00 99,99 мкс, шаг 0,01 мкс
Датчик (1–2–4)	Тип подключённого датчика ^з	Поддерживается 5 типов датчиков

Пояснения к таблице 3:

¹ — При работе с наклонным датчиком для правильного расчета положения точки отражения необходимо заранее правильно установить угол наклона пластины. Поскольку номинальным значением некоторых датчиков является не значение угла, а значение коэффициента К, то для удобства при вводе угла наклона пластины, в индикаторе 7 области 1 дисплея отображается пересчитанное значение коэффициента К. Угол наклона и коэффициент К датчика являются одним и тем же параметром, и при изменении угла, изменяется коэффициент К. Значение коэффициента К датчика равно значению тангенса угла наклона. Для прямого датчика значение параметра равно «0,0°».

² — Установите время задержки УЗ волны в призме датчика, если она известна, если неизвестна, то её необходимо будет установить при калибровке.

³ — Установите тип датчика соответствующий подключённому. При выборе загружаются соответствующие параметры по умолчанию для данного типа датчика (список типов датчиков ниже, таблица с подробным описанием в разделе "Типы датчиков").

- Совмещённый прямой (CS);
- Совмещённый наклонный (CI);
- Раздельно-совмещённый прямой (SCS);
- Раздельно-совмещённый наклонный (SCI);
- Раздельный прямой (SS).

• МЕНЮ «ДОПОЛНИТЕЛЬНЫЕ НАСТРОЙКИ» (1–3) (см. табл. 4)

Таблица 4 — Лополнительные настройки

Пункт меню	Описание	Диапазон
Рейтинг AWS (1–3–1)	Функция оценки качества сварных швов¹	45 55%
Сигнализация (1–3–2)	Срабатывание сигнализации при превышении	Выше установленного
Порог подавления (1–3–3)	Подавление паразитных эхосигналов ²	Ниже установленного
Частота повт. (1–3–4)	Частота повторения зондирующих импульсов³	100 800 Гц

Пояснения к таблице 4:

1 — Оценочное значение качества сварных швов на основе рекомендаций Американ-² — Для более точного измерения можно подавить паразитные эхосигналы

ской ассоциации сварщиков. Требует предварительной настройки, а после измерения получения окончательного результата по специальным таблицам. Включение функции возможно только при амплитуде эхосигнала в диапазоне 45 ... 55% от высоты дисплея. уровень которых ниже установленного значения. Для подавления настройте необходимый уровень, ниже которого ВСЕ эхосигналы будут подавлены. Данной функцией нужно пользоваться с осторожностью, т.к. не отключив её при будущих измерениях можно не увидеть слабый эхосигнал. ³ — Устанавливается в зависимости от скорости сканирования и толщины.

• МЕНЮ «ВСПОМОГАТЕЛЬНЫЕ НАСТРОЙКИ» (1–4) (см. табл. 5)

Таблица 5 — Вспомогательные настройки

Пункт меню	Описание	Диапазон
Заливка эхограммы (1–4–1)	Заполнение импульса эхосигнала1	
Заморозка (1–4–2)	Заморозка эхограммы²	
Цвет эхограммы (1–4–3)	Выбор цвета эхограммы³	5 цветов
Зондирующий импульс (1-4-4)	Выбор типа зондирующего импульса ⁴	4 типа

Пояснения к таблице 5:

¹ — Функция предназначена для лучшей визуализации эхограммы при наличии неблагоприятных факторов.

² — Функция предназначена для остановки развёртки–А и заморозки эхограммы. ³ — Выберите наиболее комфортный для вас цвет отображения эхограммы на дисплее. Доступно 5 цветов. При выборе чёрного цве та фон рабочей области меняется на белый.

⁴ — Выберите необходимый для ваших измерений тип зондирующего импульса. Доступен выбор из 4 типов: 1 — Положительная полуволна, 2 — Положительная полуволна, 3 — Полная волна, 4 — Радиочастотная волна.

/	1	•	
_	-	_	-

• МЕНЮ «СТРОБ А» (1–5) (см. табл. 6)

Таблица 6 — Строб А.

Пункт меню	Описание	Диапазон
Начало (1–5–1)	Точка начала строба	
Ширина (1–5–2)	Ширина строба	
Высота (1–5–3)	Высота строба	
Режим стробов (1–5–4)	Режим отображения стробов на дисплее¹	3 режима

Пояснения к таблице 6:

- ¹ Выберите режим работы стробов:
- Только строб А;
- Только строб В;
- Измерение толщины детали дифференциальным способом.

• МЕНЮ «СТРОБ В» (1–6) (см. табл. 7)

Таблица 7 — Строб В.

Пункт меню	Описание	Диапазон
Начало (1–6–1)	Точка начала строба	
Ширина (1–6–2)	Ширина строба	
Высота (1–6–3)	Высота строба	
Начало усиления (1–6–4)	Ограничение нижнего предела усиления ¹	0 120 дБ

Пояснения к таблице 7:

¹ — Для удобства можно ограничить нижний предел усиления. Полный диапазон усиления 120 дБ. Примеры ограничения в таблице:

Уровень ограничения	Фиксированное усиление	Диапазон установки
0 дБ	0 дБ	0 120 дБ
10 дБ	10 дБ	0 110 дБ
30 дБ	30 дБ	0 90 дБ
70 дБ	70 дБ	0 50 дБ

Т.е. при включенном ограничении в 30 дБ, уровень регулировки будет составлять 0 ... 90 дБ, а полное усиление, при например, включенном ограничении в 30 дБ и установленном 45 дБ будет составлято 30 дБ + 45 дБ = 75 дБ.

• МЕНЮ «КАЛИБРОВКА ПРЯМОГО» (2–1) (см. табл. 8)

Таблица 8 — Калибровка прямого датчика.

Пункт меню	Описание	Диапазон
Калибровка прямого (2–1–1)	Включение калибровки прямого датчика	
Толщина эталона (2–1–2)	Установка толщины испытательного блока	1 999 мм, шаг 0,1 1 мм
Старт (2–1–3)	Запуск процесса калибровки	
Настройка (2–1–4)	Совмещение строба с эхосигналом	

• МЕНЮ «КАЛИБРОВКА НАКЛОННОГО» (2–2) (см. табл. 9)

Таблица 9 — Калибровка наклонного датчика

Пункт меню	Описание	Диапазон
Калибровка наклонного (2–2–1–1)	Включение калибровки наклонного датчика	
Размер эталона 1 (2–2–1–2)	Установка размера 1 испытательного блока	10 9999 мм, шаг 1 50 мм
Размер эталона 2 (2–2–1–3)	Установка размера 2 испытательного блока	10 9999 мм, шаг 1 50 мм
Скорость звука (2–2–2–1)	Измерение скорости звука в материале	
Задержка в призме (2–2–2–2)	Измерение задержки в призме датчика	
Передняя кромка (2–2–2–3)	Установка длины передней кромки датчика	1 100 мм, шаг 0,1 мм
Глуб. центра отверстия (2–2–3–1)	Установка глубины центра отверстия	1 199 мм, шаг 1 мм
Диаметр отверстия (2–2–3–2)	Установка диаметра отверстия	1 199 мм, шаг 1 мм
Наклон пластины (2–2–3–3)	Измерение угла наклона пластины	
Настройка (2–2–4)	Совмещение строба	

Для создания кривых DAC необходимы предназначенные для этого испытательные блоки, возможно использование специализированных блоков, указанных в технологической карте. В зависимости от задач используются те или иные блоки из необходимого материала. ИСПЫТАТЕЛЬНЫЕ БЛОКИ В КОМПЛЕКТ ПОСТАВКИ НЕ ВХОДЯТ И ПРИОБРЕТАЮТСЯ ОТДЕЛЬНО.

• МЕНЮ «КРИВАЯ DAC» (2–3) (см. табл. 10)

Таблица 10 — Кривая DAC.

Пункт меню	Описание	Диапазон
Кривая DAC (2–3–1)	Включение кривой и выбор типа кривой	Кривая, ломанная
Узловая точка (2–3–2)	Управление созданными узловыми точками ¹	До 10 точек, минимум 3
Настройка / созд. точки (2–3–3)	Совмещение строба с эхосигналом / создание точки	
Создание DAC (2–3–4)	Создание кривой по созданным узловым точкам²	

Пояснения к таблице 10:

1— Если узловая точка(и) создана(ы) неправильно, то установите значение в этом окне соответствующее последней правильной точке. Точки созданные после неё будут удалены. Создайте точки снова.

² — Для создания кривой необходимо не менее 3 точек, для создания более точной кривой лучше создать 5 ... 10 точек. Измените значение «Создать?» на «Создана». После создания кривой изменить тип кривой невозможно.

• МЕНЮ «НАСТРОЙКА DAC» (2-4) (см. табл. 11)

Таблица 11 — Настройка DAC.

Пункт меню	Описание	Диапазон
Уровень брака (2–4–1)	10 фиксированных + 5 настраиваемых	-50 50 дБ
Уровень контроля (2–4–2)	10 фиксированных + 5 настраиваемых	-50 50 дБ¹
Уровень оценки (2–4–3)	10 фиксированных + 5 настраиваемых	-50 50 дБ²
Выбор стандарта (2–4–4)	10 предустановленных стандартов ³	

Пояснения к таблице 11:

¹— Установленное значение не может быть выше браковочного уровня.

² — Установленное значение не может быть выше контрольного уровня.

³ — Создайте до 5 своих наборов значений допустимого отклонения или выберите подходящий для вас стандарт из 10 предустановленных Китайских национальных стандартов УЗ-дефектоскопии: GB/T11345, NB/T47013.3-2015, JG/T3034.2005, SY/T 4109-2013, GB/T3559-94, ASME-3, DL-T820-2002A, DL-T820-2002B, DL-T820-2002C, TB10212-98.

Предустановки этих стандартов приведены в таблице ниже. В зависимости от сферы применения перечисленные выше стандарты имеют полное или частичное пересечение с международными стандартами ISO и Российским ГОСТ. При необходимости тексты указанных стандартов можно найти в сети интернет на китайском или английском языках.

Стандарт	Уровень брака	Уровень контроля	Уровень оценки
GB/T11345	0 дБ	- 6 дБ	- 10 дБ
NB/T47013.3-2015	2 дБ	- 8 дБ	- 14 дБ
JG/T3034.2005	0 дБ	- 10 дБ	- 16 дБ
SY/T 4109-2013	- 2 дБ	- 8 дБ	- 14 дБ
GB/T3559-94	2 дБ	- 6 дБ	- 12 дБ
ASME-3	0 дБ	- 6 дБ	- 14 дБ
DL-T820-2002A	0 дБ	- 10 дБ	- 16 дБ
DL-T820-2002B	- 4 дБ	- 10 дБ	- 16 дБ
DL-T820-2002C	– 2 дБ	- 8 дБ	- 14 дБ
TB10212-98	- 2 дБ	- 10 дБ	16 дБ

Эти стандарты или настройки доступны только после создания кривой DAC. Все значения смещения трех кривых строятся относительно базовой кривой (серая линия), которая строится с использованием информации о данных узловых точек и закона затухания ультразвуковой волны в процессе распространения. Последовательность оценки распределяется по дисплею сверху вниз.

• МЕНЮ «КРИВАЯ AVG» (2-5) (табл.12)

Таблица 12 — Кривая AVG

Пункт меню	Описание	Диапазон
Кривая AVG (2–5–1)	Включение кривой AVG	
Тип отражателя (2–5–2)	Выбор типа отражателя¹	2 типа
Калибровка AVG (2–5–3)	Калибровка кривой АVG	
Настройка (2–5–4)	Совмещение строба и эхосигнала	

Пояснения к таблице 12:

1 — Выберите тип отражателя: цилиндрическое отверстие на дне равное диаметру дефекта или плоский отражатель.

• МЕНЮ «НАСТРОЙКА АVG» (2–6) (см. табл. 13)

Таблица 13 — Настройка AVG

Пункт меню	Описание	Диапазон
Настройка кривой (2–6–1)	Установка эквивалентного значения	0,2 90 мм
	Отображение /скрытие размера	
Газмер эквивалента (2–0–2)	эквивалента	

МЕНЮ «ПРОФИЛЬ» (3–1) (см. табл. 14) Таблица 1/1 — Профиль

таолица 14 — профиль	
Пункт меню	Описание
Профиль № (3–1–1)	Выбор № профиля для загрузки¹
Сохранить (3–1–2)	Сохранение настроек в выбранном про- филе ²
Удалить или нет (3–1–3)	Удаление выбранного профиля
Удалить все профили (3–1–4)	Удаление всех профилей (возврат к за- водским установкам)

Пояснения к таблице 14:

¹ — Выберите пустой профиль для создания нового, или выберите предварительно настроенный № профиля (загрузка параметров из него произойдёт автоматически при выборе), при этом параметры которые были установлены перед выбором будут сохранены в «последний» (last.ini) профиль. «*» — перед № профиля означает что в нём сохранены данные, № профиля отображаемый красным цветом означает что профиль пустой.

Данные из «последнего» профиля будут перезаписаны при выключении прибора или смене профиля. По этой причине настройки из «последнего» профиля могут быть потеряны.

² — Сохранение всех установленных на момент сохранения параметров в выбранный профиль. ВНИМАНИЕ!!! Если в выбранном № профиля уже есть сохранённые параметры, то они будут перезаписаны.

МЕНЮ «СИСТЕМА» (3–2) (см. табл. 15) Таблица 15 — Системные настройки

Пункт меню	Описание	Диапазон				
Файловый менеджер	Выбор типа файлов для					
(3–2–1)	просмотра ¹					
Профиль (3–2–1–1)	Просмотр файлов профилей	*.ini				
Эхограмма (3–2–1–2)	Просмотр файлов эхограмм	*.bmp				
Видео (3–2–1–3)	Просмотр файлов видео	*.vid				
	Просмотр содержимого папки					
USB (3–2–1–4)	«CH» в корневом каталоге					
	USB-накопителя					
$\Pi_{0,\alpha,c,\rho,\sigma,\tau,\nu,\tau}$ (2, 2, 2)	Настройка яркости подсветки	1 70				
подсветка (5-2-2)	дисплея	1 20				
		9 100%				
установка АРУ (3-2-4)	пастроика уровня усиления АРУ	(по умолчанию 80%)				

Пояснения к таблице 15:

¹ — предназначен для просмотра, копирования, удаления файлов во внутренней памяти и на внешнем USB накопителе.

² — предустановка уровня до которого будет усиливаться или ослабляться эхосигнал при использовании функции АРУ.

МЕНЮ «ЭХОГРАММА» (3–3) (см. табл. 16)

Таблица 16 — Эхограмма

Пункт меню	Описание
Снимок № (3–3–1)	Выбор № эхограммы или № ячейки
Просмотр эхограммы (3–3–2)	Просмотр выбранной эхограммы
Сохранить (3–3–3)	Сохранение эхограммы в выбранной ячейке
Удалить или нет (3–3–4)	Удаление выбранной эхограммы²

Пояснения к таблице 16:

¹ — сохранить можно 100 эхограмм. Дальнейшее сохранение невозможно до удаления части сохранённых эхограмм из внутренней памяти. Сохранение в ячейку где уже есть данные — невозможно.

² — Удаление выбранной эхограммы. Удаление без подтверждения.

• МЕНЮ «ВИДЕО» (3-4) (см. табл. 17)

Таблица 17 — Видео

Пункт меню	Описание
Запись № (3–4–1)	Выберите № ячейки для записи или воспроизведения¹
Начало записи (3–4–2)	Выберите «Да» для включения записи
Остановка записи (3–4–3)	Выберите «Да» для остановки записи
	Выберите «Да» для начала просмотра записи, «Нет» для
просмотр записи (5-4-4)	остановки просмотра

Пояснения к таблице 17:

¹ — запись сохраняется автоматически в выбранной ячейке. Сохранение в ячейку где уже есть запись — невозможно. № ячейки отмеченный «*» содержит запись, красный № ячейки — пустой.

• МЕНЮ «ДОПОЛНИТ. ФУНКЦИИ» (3–5) (см. табл. 18)

Таблица 18 — Дополнительные функции

Пункт меню	Описание	Диапазон
Развёртка В (3–5–1)	Вход в режим В—развёртки	
Скорость сканирования (3–5–1–1)	Установка скорости сканирования	0,02 1,00
Сканирование (3–5–1–2)	Запуск / остановка сканирования	
Очистка (3–5–1–3)	Очистка области сканирования	
Выход (3–5–1–4)	Выход из режима В—развёртки	
Дно детали (3–5–2)	Отображение дна детали на А—развёртке	
Линейка (3–5–3)	Переключение режима линейки1	

Пояснения к таблице 18:

¹ — Для прямого датчика — только путь звуковой волны S.

Для наклонного датчика — путь звуковой волны S или глубина D соответствующая пути звука с установленным углом датчика. Например: при установленном угле датчика 60°

и диапазоне по пути звуковой волны 100 мм, диапазон линейки по глубине будет 50 мм. По этой разметке можно в реальном времени без дополнительных измерений с помощью строба видеть глубину залегания отражателя. Схематичный рисунок справа.

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ПО для прибора доступно на USB-накопителе или на сайте www.megeonpribor.ru. Перед началом работы скопируйте папку с ПО на ПК.

РЕЖИМЫ РАБОТЫ

Прибор может использоваться в двух режимах «Стандартный» и «Профессиональный». Стандартный режим подразумевает предварительную настройку профилей под каждое измерение (возможно сохранить до 500 профилей). После этого выбирается

необходимый профиль и проводятся измерения. Данный режим предназначен для специалистов со средним уровнем подготовки при условии настройки профилей специалистом с более высоким уровнем подготовки.

Профессиональный режим подразумевает тонкую настройку прибора под каждое измерение. Рассчитан для использования специалистами с высоким уровнем подготовки, и для сложных измерений требующих подстройки многих параметров во время измерения.

🛡 ВАРИАНТЫ И ПОРЯДОК ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ

Предварительная настройка профилей:

Подготовьте необходимые испытательные блоки => нанесите контактную жидкость => подключите датчик => проведите калибровку датчика => установите необходимые параметры => проведите измерение => постройте кривые => сохраните профиль.

Измерение по предварительно настроенным профилям:

Подготовьте поверхность => нанесите контактную жидкость => подключите датчик (важно, чтобы профиль настраивался именно с этим датчиком) => выберите необходимый профиль => проведите измерение => сохраните результаты.

Измерение без предварительных настроек:

Подготовьте поверхность => нанесите контактную жидкость => подключите датчик => проведите калибровку датчика => установите необходимые параметры => проведите измерение => скорректируйте настройки при необходимости => постройте кривые => оцените с помощью кривых => сохраните результаты.

ЗАРЯДКА АККУМУЛЯТОРА

Установите аккумулятор в прибор.

Подключите к прибору зарядное устройство из комплекта поставки и включите его в сеть.

Загорится красный индикатор означающий что процесс зарядки начался. По его окончании индикатор погаснет. Выключенный прибор медленно разряжает аккумулятор, если не предполагается пользоваться прибором более 1 недели рекомендуется зарядить и снять аккумулятор с прибора во избежание его полного разряда и последующего выхода из строя.

Если индикатор во время зарядки начал быстро мигать (сбой процесса зарядки), то отключите зарядное устройство, включите прибор примерно на 1 минуту, после этого выключите прибор и подключите зарядное устройство снова. Зарядка будет продолжена.

ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ ПРИБОРА

Нажмите кнопку (), начнётся загрузка прибора (примерно 10 сек.), после этого появится рабочее окно, загрузятся последние настройки перед выключением. Проверьте уровень заряда аккумулятора. При недостаточном заряде (25% и менее) необходимо его зарядить. Прибор может работать от адаптера переменного тока одновременно заряжая аккумулятор. Для выключения прибора нажмите на эту же кнопку.

настройки, системные настройки, настройки кривых и т.д.

Любые изменения параметров без сохранения в профиль являются временными.

При выключении, прибор сохраняет настройки на момент выключения и при последующем включении их загружает. При этом не гарантируется что все сделанные настройки сохранятся после выключения и последующего включения прибора.

При сохранении профиля сохраняются все установленные на момент сохранения настройки, в т.ч настройки и калибровки датчика, базовые

• ПРЕДВАРИТЕЛЬНЫЕ НАСТРОЙКИ

 Яркость подсветки дисплея — настраивается с учётом внешнего освещения. Чрезмерная яркость способствует более быстрому утомлению глаз и уменьшению времени автономной работы.

• Цвет эхограммы — настраивается в зависимости от личных предпочтений и внешних факторов

• Уровень АРУ — в большинстве случаев предварительно установленный уровены 80% подходит для большинства измерений, но в некоторых случаях удобней настроить своё значение.

 Заполнение эхограммы — используйте эту функцию при ярком освещении для уменьшения нагрузки на зрение.

Настройка профилей — используется для уменьшения времени настройки при однотипных измерениях.

• ТИПЫ ДАТЧИКОВ (см. Табл.19.)

Таблица 19 — Типы датчиков

Тип датчика	Сокращённое название	Отображение на дисплее
Совмещённый прямой	Combined Straight (CS)	·⊡↔•
Совмещённый наклонный	Combined Inclined (CI)	
Раздельный прямой	Split Straight (SS)	·E+⊡·
Раздельно-совмещённый прямой	Separate-combined straight (SCS)	T T
Раздельно-совмещённый наклонный	Separate-combined inclined (SCI)	Ŕ

ПОДКЛЮЧЕНИЕ ДАТЧИКА (ОВ)

Для подключения совмещённого прямого (CS) или совмещённого наклонного (CI) датчиков можно использовать любое гнездо, в этих режимах они работают одинаково. В остальных режимах гнёзда работают по отдельности. Раздельные прямые (SS), раздельно-совмещённые прямые (SCS) и раздельно-совмещённые наклонные (SCI) датчики подключаются к обоим гнёздам, причём если на датчике(ах) присутствует маркировка соответствующая «излучатель» и «приёмник», то их необходимо подключать к гнёздам «Т» (излучатель) и «R» (приёмник), если маркировка отсутствует или ПЭП равнозначны, то можно подключать произвольно.

• УСТАНОВКА ПАРАМЕТРОВ ДАТЧИКА (ОВ)

Сначала необходимо установить тип датчика, затем размеры ПЭП и его параметры.

После подключения датчика(ов) необходимо установить параметры соблюдая порядок указанный ниже:

Датчик (1–2–4) — тип подключённого(ых) датчика(ов). Параметр устанавливается в первую очередь т.к. при его изменении применяются некоторые константы и автоматически изменяются некоторые параметры.

Частота датчика (1–2–1–2) — рабочая частота датчика (указана на датчике).

Диаметр пластины (1–2–2–2) — диаметр круглой пластины в прямом датчике (указан на датчике).

Длина пластины (1–2–2–3) — длина пластины в наклонном датчике (указана на датчике).

Ширина пластины (1–2–2–4) — ширина пластины в наклонном датчике (указана на датчике).

Частота повт. (1–3–4) — частота повторения зондирующих импульсов (устанавливается в зависимости от толщины исследуемого объекта и скорости сканирования). Зондирующий импульс (1–4–4) — тип зондирующего импульса (выбирается в зависимости от типа измерения).

🔍 КАЛИБРОВКА ДАТЧИКА

Для быстрой калибровки наклонного датчика необходим испытательный блок серии СО-ЗР или ему подобный, из необходимого материала. Испытательные блоки в комплект поставки не входят и приобретаются отдельно.

Перед началом калибровки необходимо подключить датчик, установить его параметры, Нанести контактную жидкость на испытательный блок и установить на него датчик.

Калибровка прямого датчика

Для калибровки прямого датчика необходим испытательный блок из необходимого материала с гладкими параллельными поверхностями толщиной не менее 50 мм. Далее в описании процесса калибровки используется блок толщиной 100 мм. В меню «Диапазон» (1-1-1), установите диапазон равный 150% от толщины подготовленного испытательного блока. Выберите меню «Калибровка прямого» (2-1). Включите режим калибровки «Калибровка прямого» (2-1-1) в положение «ВКЛ». (рис.4). Установите толщину испытательного блока в меню «Толщина эталона» (2–1–2) (см. Рис. 4.). Нажмите кнопку (АРУ) чтобы отрегулировать усиление эхосигнала (см. Рис. 5.).

Рис. 4. Получение эхосигнала

Настройте положение строба в параметре «Настройка» (2–1–4) так, чтобы первый эхосигнал попадал в строб (см. Рис. 6). Нажмите ещё раз кнопку (АРУ) чтобы отрегулировать первый эхосигнал, т.к. функция АРУ регулирует амплитуду сигнала в пределах строба (см. Рис. 7.).

Рис. 6. Настройка положения строба

Если строб слишком широкий чтобы поймать только нужный эхосигнал, то перейдите в меню «Строб В» (1–6), отрегулируйте его ширину в настройке «Ширина» (1–6–2) и его начало настройкой «Начало» (1–6–1) так, чтобы он захватывал только нужный эхосигнал. Вернитесь в меню «Калибровка прямого» (2–1).

Рис. 5. Настройка усиления

Рис. 7. Корректировка усиления

Скорректируйте положение строба, если это необходимо. Перейдите в пункт «Старт» (2–1–3) (см. Рис. 8.), и нажмите кнопку **ОК**).

Рис. 8. Корректировка строба

Значение глубины в индикаторе №5, области отображения результатов должно стать равно толшине испытательного блока. Калибровка завершена (см. Рис. 9.).

Рис. 9. Выполнение калибровки

Калибровка наклонного датчика

Быстрая калибровка. Быструю калибровку можно использовать только в случае, если значения угла наклона пластины и передней кромки известны, в противном случае необходимо проводить полную калибровку.

В меню «Диапазон» (1–1–1), установите диапазон равный 100 мм, в меню (1–1–2) установите скорость звука в материале, в меню (1–2–1) угол наклона пластины датчика если известен, если нет, то его необходимо измерить.

Установите датчик на смоченную контактной жидкостью поверхность №1 меры СО-ЗР или аналогичной, как указано на (рис.10).

Рис. 10. Установка датчика

Получите эхосигнал от поверхности радиуса R59 с максимально возможной амплитудой. (рис.11). Изменяя задержку в меню (1–2–3), добейтесь отображения в индикаторе 6 панели отображения, значения равного 59,0 мм. В меню (1–2–1) установите угол наклона пластины, а в меню (1-2-2) установите значение передней кромки датчика, если они известны. Быстрая калибровка завершена. Если значения не известны, то установите длину передней кромки равную 0,0 мм, и проведите измерение (см. ниже).

Рис. 11. Получение эхосигнала

Измерение угла наклона пластины и передней кромки датчика.

Нанесите контактную жидкость и установите датчик на испытательный блок СО-ЗР, как показано на (рис. 12 и 13). Чтобы обеспечить стабильность амплитуды эхосигнала и исключить дрожжание и изменение амплитуды из-за разной силы прижима датчика к поверхности, установите на датчик статический груз (примерно 500 г). Получите эхосигнал от угла между поверхностью 2 и гранью 1, как указано на (рис. 13).

Рис. 12. Установка датчика

эхосигнала показан на (рис. 14).

Рис. 14. Получение эхосигнала

Рис. 13. Установка датчика В меню (1–2–1) установите примерный угол наклона датчика. Примерный вид

Установите строб на эхосигнал. В индикаторе №3 области отображения будет отображаться высота эхосигнала в % от высоты дисплея. Чтобы обеспечить стабильность амплитуды эхосигнала и исключить дрожжание из-за разной силы прижима датчика к поверхности - прилагайте усилие только к перемещению датчика, после которого убирайте руку для стабилизации амплитуды. Перемещая датчик вперёд и назад добейтесь максимальной амплитуды эхосигнала и нажмите кнопку (АРУ) (запишите значение), как на (рис.15). Далее сдвигая датчик назад добейтесь в индикаторе №З значения на 3% меньше, чем максимальное значение, как на (рис. 16).

Рис. 15. Уменьшение амплитуды

Рис. 16. Измерение угла наклона

После этого изменяя значение угла в меню (1–2–1) добейтесь отображения в индикаторе №5 значения 59,0 мм (высота меры). При достижении указанного значения высоты значение угла в меню (1–2–1) будет соответствовать углу наклона пластины датчика.

Не изменяя положения датчика, линейкой измерьте расстояние от грани 1 меры до переднего края датчика, как на (рис. 17) (расстояние «X1» по рис. 13). Далее из значения в индикаторе №4 области отображения (рис. 18) вычтите измеренное значение, получите длину передней кромки датчика. Полученное значение установите в меню (1-2-2). После этого индикатор №4 будет показывать расстояние по поверхности от переднего края датчика до дефекта.

Рис. 17. Измерение передней кромки

1.0 🛃 🚺 Дополнит. Вс настройки на Строб А Рис. 18. Измерение кромки

Правильность калибровки можно проверить измерив линейкой расстояние по пути ультразвука, и расстояние «X1» по рис.13 и сравнив их со значениями в индикаторах №6 и №4 соответственно. При этом значение в индикаторе №5 должно быть 59,0 мм.

Параметры «Угол наклона» и «Передняя кромка» измеряются один раз для каждого датчика. При последующих калибровках этого датчика они вносятся вручную.

• ПРОФИЛИ

Настройка и сохранение

Прибор позволяет настроить до 500 профилей измерения с разными настройками. Порядок настройки профиля:

1 Войдите в меню «Профиль» (3–1), в пункте «Профиль №» (3–1–1) выберите свободный профиль или профиль который можно заменить. Если № профиля красный, то в нём данных нет, если около № стоит *, то в этом профиле сохранены настройки. При сохранении в этот профиль старые настройки будут перезаписаны.

🕗 Подключите необходимый датчик(и).

Э Установите параметры датчика и зондирующих импульсов. Подготовьте необходимые испытательные блоки и проведите калибровку датчика(ов).

Проверить правильность калибровки датчика. 6 Войдите в меню «Профиль» (3–1), в пункте «Сохранить» (3–1–2) установите «Сохранить?» и нажмите **ОК**.

П в пункте «Профиль №» (3–1–1) выберите другой профиль и после звукового сигнала (означающего загрузку выбранного профиля) — выберите тот, в котором сохраняли настройки, после звукового сигнала проверьте правильность сохранённых настроек.

В Настройте остальные параметры.

Овторите пункты 6 и 7 для сохранения и проверки. При необходимости постройте кривые DAC и AVG по необходимым испытательным блокам.

🕦 Повторите пункты 6 и 7 для сохранения и проверки. 🔞 Проверьте все настройки профиля, калибровку датчика, правильность построения кривых.

Управление профилями

Редактирование профиля

Для редактирования профиля загрузите его, измените необходимые параметры, сохраните. Проверьте правильность сохранения.

Удаление профиля

Для удаления выбранного профиля перейдите в меню «Удалить или нет» (3–1–3), энкодером выберите «Удалить». Удаление профиля происходит без подтверждения. Удаление произведено, если № профиля стал красным.

Удаление всех профилей

Данная функция удаляет ВСЕ настроенные профили. Т.к. настройка профилей достаточно трудоёмкая операция, то пользоваться данной функцией необходимо только в крайнем случае.

Для удаления всех профилей (возврат к заводским установкам) перейдите в меню «Удалить все профили» (3–1–4) и нажмите **ОК**), подтвердите удаление нажав **ОК**) ещё раз. После удаления будет загружен профиль № «О» с параметрами по умолчанию.

Создание резервной копии профиля(ей)

не опознает.

К выключенному прибору подключите USB-накопитель, включите прибор, после загрузки перейдите в меню «Система» (3–2), в файловом менеджере «Менеджер файлов» (3–2–1) выберите «Профиль», нажмите **ОК**. Кнопками 🔊 и 🔽 выберите профиль который надо сохранить, нажмите **(F2)** «Копировать» он выделится и нажмите **(ОК)**. Профиль будет скопирован на USB-накопитель в папку «CH». При наличии в папке профиля с таким № — он будет перезаписан. Если нужно скопировать несколько профилей, то повторите операцию для каждого. Для копирования всех профилей, нажмите **(F2)** «Копировать», энкодером выберите «Копировать всё» и нажмите (ОК)

Недопустимо изменять имена файлов, т.к. при восстановлении прибор его

Восстановление из резервной копии профиля(ей)

К выключенному прибору подключите USB-накопитель, в папке CH, в корневом каталоге которого записаны профиль(и), включите прибор, после загрузки перейдите в меню «Система» (3–2), в файловом менеджере «Менеджер файлов» (3–2–1) выберите «USB», нажмите **ОК**). Кнопками 🛦 и 🔽 выберите профиль который надо восстановить, нажмите **(F2)** «Копировать» он выделится и нажмите **(OK)**. Профиль будет скопирован с USB-накопителя во внутреннюю память прибора в папку «CH». При наличии в папке «CH» профиля с таким-же № — он будет перезаписан. Если нужно восстановить несколько профилей, то повторите операцию для каждого. Для восстановления всех профилей, находящихся на USB-накопителе — нажмите **F2** «Копировать», энкодером выберите «Копировать всё» и нажмите **ОК**.

• ЭХОГРАММЫ

Сохранение

Для быстрого сохранения эхограммы нажмите кнопку (СНИМОК), прибор сохранит в виде ВМР-файла снимок дисплея во внутреннюю память в папку «PI» в первую пустую ячейку. Файл сохранится, на дисплее отобразится сообщение об удачном сохранении. Кроме этого сохранить эхограмму можно зайдя в меню «Эхограмма» (3–3), выбрать № файла «Снимок №» (3–3–1), если № файла красного цвета, то эта ячейка пустая, если белого со звёздочкой, то в данной ячейке хранятся данные и запись в неё производиться не будет до её очистки. После выбора № ячейки перейдите в меню «Сохранить» (3–3–3) и выберите энкодером «Сохранить?» и нажмите **ОК**. Файл сохранится, а № ячейки изменится на следующую свободную.

Просмотр

Для просмотра эхограммы войдите в меню «Эхограмма» (3–3), выбрите № файла «Снимок №» (3–3–1), если № файла красного цвета, то эта ячейка пустая и просмотр невозможен, если белого со звёздочкой, то в данной ячейке хранится эхограмма и её можно просмотреть. Перейдите в параметр «Просмотр эхограммы» (3–3–2) и выберите энкодером «Вкл.». На дисплее будет отображена сохранённая эхограмма. Для закрытия измените параметр на «Нет».

Удаление

Для удаления эхограммы войдите в меню «Эхограмма» (3–3), выбрите № файла «Снимок №» (3–3–1), если № файла красного цвета, то эта ячейка пустая и удаление невозможно, если белого со звёздочкой, то в данной ячейке хранится эхограмма и её можно удалить. Перейдите в параметр «Удалить или нет» (3-3-4) и выберите энкодером «Удалить» и нажмите (**ОК**). № ячейки поменяет цвет на красный — эхограмма удалена.

Перенос на ПК

Перенос на ПК осуществляется методом копирования на USB-накопитель (см. раздел ниже).

• ВИДЕОЗАПИСЬ

Запись

Для записи эхограммы в реальном времени зайдите в меню «Видео» (3–4), выберите № ячейки «Запись №» (3–4–1), если № ячейки красного цвета, то эта ячейка пустая, если белого со звёздочкой, то в данной ячейке хранятся данные и запись в неё производиться не будет до её очистки. После выбора № ячейки перейдите в меню «Начало записи» (3–4–2) и выберите энкодером «Да». Начнётся запись. Проводите необходимые измерения. По окончании измерений остановите запись выбрав «Да» в параметре «Остановка записи». «Да» в параметре «Начало записи» изменится на «Нет». Запись сохраняется автоматически в выбранной ячейке.

Просмотр

Для просмотра видеозаписи перейдите в меню «Видео» (3–4), выбрать № ячейки «Запись №» (3–4–1), если № ячейки красного цвета, то эта ячейка пустая, и просмотр невозможен, если белого со звёздочкой, то в данной ячейке хранятся данные и их можно просмотреть. После выбора № ячейки перейдите в меню «Просмотр записи» (3-4-4) и выберите энкодером «Да». Начнётся воспроизведение записи. Для остановки воспроизведения выберите энкодером «Нет».

Удаление

Удалить видеозапись можно только через файловый менеджер.

Перенос на ПК

Перенос на ПК осуществляется методом копирования на USB-накопитель (см. раздел ниже).

МЕНЕДЖЕР

Данный инструмент предназначен для работы с файлами данных во внутренней памяти и на внешнем USB-накопителе. Состоит из 4 окон, каждое из которых отвечает за свой тип данных (см. табл. 20). Для работы с прибором на USB-накопителе должна быть файловая система FAT32.

Таблица 20 — Файловый менеджер

Окно	Тип данных	Максимальное Тип данных Имена файлов количество файлов		Область памяти
Профиль	Файлы сохранённых профилей	2:/ch/last_channel.ini — сохранение текущих настроек при выключе- нии или смене профиля. 2:/ch/channel_data0.ini — файлы сохранённых профилей, где цифры от 0 до 499 являются № профилей	500 профилей и 1 профиль для временного хранения настроек (пере- записываемый)	Раздел 2, папка ch/
Эхограмма	Скриншоты дисплея	2:/pi/1.bmp — графиче- ский растровый файл	100 эхограмм*	Раздел 2, папка рі/
Видео	Видеофайл из набора метаданных	2:/vi/VIDO_DATA1.vid — видеофайл из набора метаданных	100 видеофайлов*	Раздел 2, папка vi/
USB	Копирование на носитель всех вышеперечислен- ных типов файлов, копиро- вание с носителя во внутреннюю память только файлы профилей.	3:/ch — файлы профилей 3:/pi — эхограммы 3:/vi — видеофайлы. Для просмотра содержимого на приборе доступна только папка с профилями.	Ёмкость до 16 Гб, накопители большего объёма могут работать некорректно.	Раздел 3, папки vi/, pi/, ch/.

Пояснения к таблице 20:

* — При заполнении внутренней памяти, дальнейшая запись невозможна, до её освобождения.

(см. типовые неисправности).

Внимание! Возможна некорректная работа счётчика свободной памяти

Окно «Профиль» (см. Рис. 19, 20)

Всего внутренней памяти	1904MB		Всего вн
Осталось внутренней памяти	1902MB		Осталось в
2: /ch/LAST_CHAN	NEL. INI		2:
2: /ch/CHANNEL_D	ATA0. INI		2:
2: /ch/CHANNEL_D	ATA1. INI		2:
2: /ch/CHANNEL_D	ATA2. INI		2:
2: /ch/CHANNEL_D	ATA3. INI		2:
2: /ch/CHANNEL_D	ATA4. INI		2:
2: /ch/CHANNEL_D	ATA5. INI		2:
2: /ch/CHANNEL_D	ATA6. INI		2:
2: /ch/CHANNEL_D	ATA7. INI		2:
2: /ch/CHANNEL_D	ATA8. INI		2:
2: /ch/CHANNEL_D	ATA9. INI		2:
2: /ch/CHANNEL_D	ATA10. INI		2:
2: /ch/CHANNEL_D	ATA11. INI		2:
2: /ch/CHANNEL_D	DATA12. INI		2:
2: /ch/CHANNEL_D	DATA13. INI		2:
Удалить Копировать Предыдущая страница	Следующая Очистка страница памяти	Назад	Удалить все профили ко

всеговнутренней памяти	1904MB		
Осталось внутренней памяти	1902MB		
2: /ch/LAST_CHAN	NEL. INI		
2: /ch/CHANNEL I	DATA0. IN	1	
2: /ch/CHANNEL_I	DATA1. IN	1	
2: /ch/CHANNEL I	DATA2. IN	I	
2: /ch/CHANNEL I	DATA3. IN	I	
2: /ch/CHANNEL I	DATA4. IN	1	
2: /ch/CHANNEL I	DATA5. IN	I	
2: /ch/CHANNEL I	DATA6. IN	I	
2: /ch/CHANNEL I	DATA7. IN	[
2: /ch/CHANNEL I	DATA8. IN	I	
2: /ch/CHANNEL I	DATA9. IN	I	
2: /ch/CHANNEL I	DATA10. IN	NI II	
2: /ch/CHANNEL I	DATA11. IN	1I	
2: /ch/CHANNEL I	DATA12. IN	II	
2: /ch/CHANNEL_I	DATA13. IN	II	
Удалить Полное Предыдущая все профили копирование страница	а Следующая страница	Очистка памяти	Назад

Рис. 19. Окно «Профиль» основное Рис. 20. Дополнительные возможности

В данном окне доступны операции с файлами профилей, такие как:

- Удаление выбранного профиля (F1) → выбор файла → (OK);
- Удаление всех профилей (F1) → изменение значения энкодером → (OK)¹;
- Копирование выделенного профиля на USB-накопитель (F2) → выбор файла → (OK)²;

Копирование всех профилей на USB-накопитель (F2) → изменение значения. энкодером **→** (**ОК**)³;

- Переход на предыдущую страницу (F3 + OK)⁴;
- Переход на следующую страницу (F4) (OK) 4;

Форматированние. Очистка ВСЕЙ внутренней памяти (F5) - изменение значения. энкодером → (ОК) 5;

Выход из окна в режим измерения (F6).

Пояснения к разделу «Окно Профиль»:

¹ — Удаляются все профили из памяти прибора

² — Выбранный профиль копируется на USB-накопитель в папку /ch, если в ней существует профиль с таким № — он будет перезаписан без предупреждения.

³ — Все профили из памяти прибора копируются на USB-накопитель в папку /ch, если в ней существуют профили с №, которые копируются, то они будут перезаписаны без предупреждения.

⁴ — Переход на предыдущую или следующую страницу возможен, если в окне более 14 файлов.

⁵ — Эта операция полностью очищает пользовательскую память прибора (возврат к заводским настройкам). После запуска операции необходимо дождаться её завершения (примерно 1 минута). Категорически запрещено прерывать операцию выключением прибора, перед запуском необходимо убедиться что заряд аккумулятора 50% или более.

Окно «Эхограмма» (см. рис. 21, 22)

Всего в	нутренней п	амяти	1904MB		
Осталось	внутренней	памяти	1894MB		
2	2: /pi/1. Bl	MР			
2	l: /pi/2. Bl	MP			
2	: /pi/3. Bl	MP			
2	: /pi/4. Bl	MP			
2	: /pi/5. Bl	MP			
2	: /pi/6. Bl	MP			
2	: /pi/7. BI	MР			
2	: /pi/8. Bl	MP			
2	: /pi/9. Bl	MP			
2	:: /pi/10. E	BMP			
2	:: /pi/11. E	$_{\rm BMP}$			
2	: /pi/12. H	BMP			
2	: /pi/13. E	BMP			
2	: /pi/14. F	BMP			
2	: /pi/15. I	BMP			
		D	C	0	
Удалить	Копировать	предыдущая страница	страница	очистка памяти	Назад

Рис. 21. Окно "Эхограмма" основное

Deero Brig ipermerinaianti	1904WID		
Осталось внутренней памяти	1894MB		
2: /pi/1. BMP			
2: /pi/2. BMP			
2: /pi/3. BMP			
2: /pi/4. BMP			
2: /pi/5. BMP			
2: /pi/6. BMP			
2: /pi/7. BMP			
2: /pi/8. BMP			
2: /pi/9. BMP			
2: /pi/10. BMP			
2: /pi/11. BMP			
2: /pi/12. BMP			
2: /pi/13. BMP			
2: /pi/14. BMP			
2: /pi/15. BMP			
Удалить Полное Предыдуц все профили копирование страниц	цая Следующая ца страница	Очистка памяти	Назад

Рис. 22. Дополнительные возможности

В данном окне доступны операции с файлами эхограмм, такие как: Удаление выбранной эхограммы (F1)
 выбор файла
 OK);
 Удаление всех эхограмм (F1) + изменение значения энкодером → (OK)¹; Копирование выделенной эхограммы на USB-накопитель (F2) выбор файла (OK)²; • Копирование всех эхограмм на USB-накопитель (F2) → изменение значения.

- энкодером → **ОК** ³;
- Переход на предыдущую страницу (F3) → (OK)⁴;
- Переход на следующую страницу (F4) → (OK)⁴;

Форматированние. Очистка ВСЕЙ внутренней памяти [F5] - изменение значения. энкодером → (ОК) 5;

Выход из окна в режим измерения (F6).

Пояснения к разделу «Окно Эхограмма»:

¹ — Этим действием удаляются все файлы эхограмм из памяти прибора

² — Этим действием выбранный файл эхограммы копируется на USB-накопитель в папку /рі, если в ней существует файл эхограммы с таким № — он будет перезаписан без предупреждения.

³ — Этим действием все файлы эхограмм из памяти прибора копируются на USB-накопитель в папку /pi, если в ней существуют файлы эхограмм с №, которые копируются, то они будут перезаписаны без предупреждения.

⁴ — Переход на предыдущую или следующую страницу возможен, если в окне более 14 файлов.

⁵ — Эта операция полностью очищает пользовательскую память прибора (возврат к заводским настройкам). После запуска операции необходимо дождаться её завершения (примерно 1 минута). Категорически запрещено прерывать операцию выключением прибора, перед запуском необходимо убедиться что заряд аккумулятора 50% или более.

Окно «Видео» (см. рис. 23, 24)

Рис. 23. Окно "Видео" основное

В данном окне доступны операции с файлами видеозаписей, такие как:

- Удаление выбранной видеозаписи (F1) → выбор файла → (OK);

энкодером **→ (ОК**) ³;

- Переход на предыдущую страницу (F3) => (OK) 4;
- Переход на следующую страницу (F4) → (OK);

энкодером → (ОК) 5;

Выход из окна в режим измерения (F6).

Рис. 24 Дополнительные возможности

Удаление всех видеозаписей (F1) → изменение значения энкодером → (OK)¹; Копирование выбранной видеозаписи на USB-накопитель (F2)→выбор файла → (OK)²; • Копирование всех видеозаписей на USB-накопитель (F2) + изменение значения

Форматированние. Очистка ВСЕЙ внутренней памяти (F5) - изменение значения.

Пояснения к разделу «Окно Видео»:

¹ — Этим действием удаляются все видеозаписи из памяти прибора

² — Этим действием выбранная видеозапись копируется на USB-накопитель в папку /vi, если в ней существует видеозапись с таким № — она будет перезаписана без предупреждения.

³ — Этим действием все видеозаписи из памяти прибора копируются на USB-накопитель в папку /vi, если в ней существуют файлы с №, которые копируются, то они будут перезаписаны без предупреждения.

⁴ — Переход на предыдущую или следующую страницу возможен, если в окне более 14 файлов.

⁵ — Эта операция полностью очищает пользовательскую память прибора (возврат к заводским настройкам). После запуска операции необходимо дождаться её завершения (примерно 1 минута). Категорически запрещено прерывать операцию выключением прибора, перед запуском необходимо убедиться что заряд аккумулятора 50% или более.

Окно «Внешний USB» (рис. 25, 26)

Рис. 25. Окно «Внешний USB» основное

Рис. 26. Дополнительные возможности

В данном окне доступны операции с файлами профилей находящихся на USBнакопителе в папке ch/, такие как:

- Удаление выбранного профиля (F1) → выбор файла → (OK);
- Удаление всех профилей (F1) → изменение значения энкодером → (OK)¹;
- Копирование выделенного профиля с USB-накопителя (F2)+ выбор файла → (OK)²;

● Копирование всех профилей с USB-накопителя (F2) → изменение значения энкодером **→ (ОК**)³;

- Переход на предыдущую страницу (F3) → (OK) ⁴;
- Переход на следующую страницу (F4) → (OK) ⁴;
- Выход из окна в режим измерения (F6).

Пояснения к разделу «Окно Внешний USB»:

¹ — Этим действием удаляются все файлы профилей находящихся на USB-накопителе в папке ch/.

² — Этим действием выбранный файл профиля копируется с USB-накопителя во внутреннюю память прибора, если в ней существует файл профиля с таким № — он будет перезаписан без предупреждения.

³ — Этим действием все файлы профилей находящихся на USB-накопителе копируются в память прибора, если в ней существуют файлы профилей с №, которые копируются, то они будут перезаписаны без предупреждения.

⁴ — Переход на предыдущую или следующую страницу возможен, если в окне более 14 файлов.

• ИЗМЕРЕНИЕ

Назначение ультразвуковово контроля

Ультразвуковой контроль — вид неразрушающего контроля, включающий в себя ультразвуковую дефектоскопию и толщинометрию. Основан на прозвучивании объекта контроля продольными, поперечными, головными, поверхностными либо нормальными волнами с целью обнаружения внутренних дефектов. Ультразвуковой контроль позволяет обнаруживать непровары, несплавления, трещины, поры, шлаковые включения, расслоения и иные подповерхностные дефекты — как одиночные, так и их скопления. Ультразвуковой контроль сварных соединений и основного металла активно практикуется на производстве, при строительстве, ремонте, реконструкции, эксплуатации, техническом диагностировании, техническом освидетельствовании, ревизии и экспертизе промышленной безопасности технических устройств, зданий и сооружений на производственных объектах.

Технология ультразвукового контроля

Технология ультразвукового контроля построена на простом физическом законе: В случае с прямыми датчиками ультразвуковой пучок вводится в объект под

траектория движения звуковых волн в однородной среде остаётся неизменной. Внутренние дефекты являются отражателями УЗ-волн. При помощи дефектоскопа и пьезоэлектрического преобразователя в материал вводятся упругие колебания. При использовании наклонного датчика они исходят от излучателя, преломляются в призме, входят в объект контроля, преломляясь ещё раз на границе раздела, и дальше отражаются от дефектов (если таковые имеются) либо от донной поверхности (если таковых нет). прямым углом (рис.27), где схематически показаны прямые и отражённые эхосигналы, а на (рис.28) их отображение на дисплее прибора, причём необходимо обратить внимание на расположение эхосигналов на рисунках чтобы понимать какой эхосигнал на (рис.28) какой точке отражения соответствует на (рис.27). По амплитуде и времени прихода эхо-сигналов можно судить о размерах и глубине залегания отражателей. Отражателями могут быть донная поверхность, боковые стенки либо, например, неровности валика усиления сварного шва, подкладное кольцо или кромки соединяемых деталей, собранных со смещением. Во всех этих случаях, кроме первого (донный сигнал), эхо-сигналы считаются ложными. Если же акустические сигналы отражаются от несплошностей, то это уже полезные сигналы — их фиксируют и по ним измеряют характеристики дефектов. Те, в свою очередь, сопоставляют с нормами отбраковки, изложенными в нормативной технической документации и операционной технологической карте. Собственно, сам термин «дефект» означает каждое отдельное несоответствие установленным требованиям.

Рис. 27. Распространение звуковых волн

Рис. 28. Отображение волн на дисплее

Упрощённое описание принципа работы дефектоскопа при измерении координат дефекта.

На (см. рис. 29) схематично приведен путь УЗ волны и расчёт прибором координат дефекта, где:

Рис. 29 Измерение координат дефекта

- S путь звука;
- d глубина дефекта;
- t толщина детали;
- х расстояние от точки выхода УЗ до передней кромки датчика;
- р расстояние по поверхности от дефекта до переднего края датчика.

При использовании прямого датчика, значение d будет совпадать со значением S, при этом остальные значения становятся неактуальными и их отображение теряет смысл.

Подготовка поверхности к исследованию

Очистите поверхность от коррозии (окислов), выровняйте поверхность (чем меньше шероховатость поверхности, тем меньше паразитных эхосигналов и точнее измерение).

Прибор рассчитан на работу с монолитными материалами. Для работы с материалами имеющими слоистую, ячеистую, пористую, волокнистую структуру, и другие типы неоднородностей — необходима высокая квалификация оператора для возможности визуального отличия паразитных сигналов (неизбежно образующихся в таких материалах) от полезных.

Нанесите на поверхность контактную жидкость.

Калибровка датчиков должна проводится с той-же контактной жидкостью что и измерение.

Измерение

Предполагается, что датчик откалиброван заранее и проведена предварительная настройка прибора.

Установите датчик на объект контроля, установите параметры объекта контроля, согласно методики:

- Диапазон измерения.
- Скорость звука в материале.
- При необходимости «начало отсчёта».
- Толщину объекта.
- Тип зондирующего импульса (в соответствии с методикой контроля).

 Частоту повторения зондирующих импульсов (в соответствии с методикой контроля) с учётом скорости сканирования и толщины объекта.

При правильной настройке и отсутствии дефектов в зоне УЗ волны вы должны увидеть на дисплее «донный сигнал» (см. рис. 30) на границе (для удобства включена функция отображения дна детали).

∏P 15		dB	26.0	dB	% 0.8
⇒0.0	mm	↓	69.3	mm	1 69
K 0. 00)	Δ			Φ
1	:	÷	:	:	:
		÷	••••	••••	••••
					:
••••••		÷	••••		
'II :					
IN:					
	1111111	•			
0	24.0		48	. 0	72.0
Основнь настройн	ie Н ки	lастр дат	ройки чика	Доп наст	олнит. гройки

На рисунках приведено измерение координат дефекта. В данном случае дефектом служит сквозное отверстие Ø6 мм в мере CO-3P (рис.31). На (рис.32) показано как выглядит дисплей после установки датчика на поверхность, и нахождением точки с максимальной амплитудой, переходим в меню (1–6) «Строб В» и устанавливаем его над эхосигналом. Нажимаем кнопку (**АРУ**). Считываем из индикаторов №4, №5 и №6 области отображения дисплея вычисленные координаты дефекта, где:

Рис. 31. Установка датчика

→ 67,5 мм (L) — длина по поверхности от переднего края датчика до дефекта; ↓ 40,7 мм (D) — глубина залегания дефекта

- № 90,4 мм (S) расстояние по пути УЗ.

Настройте и используйте кривые DAC и AVG для ускорения контроля. При необходимости сохраните результаты измерений.

Измерение толщины дифференциальным способом

Подключите прямой датчик, проведите его калибровку, выполните предварительную настройку прибора. Включите режим дифференциального измерения толщины в меню (1–5–4). Установите датчик в место где необходимо измерить толщину. Диапазон должен быть установлен не менее 250% предполагаемой толщины. После настройки усиления войдите в меню «Строб В» (1–6) и установите строб на донный эхосигнал (рис.33), если эхосигналов несколько, то уменьшите ширину строба так, чтобы он не перекрывал соседние эхосигналы. Перейдите в меню «Строб А» и установите его на следующий эхосигнал с максимальной амплитудой. В индикаторе 5 области 1 дисплея считайте измеренную толщину.

99,4 мм (Т) — толщина детали.

Рис. 30. Донный сигнал

Рис. 32. Измерение, эхосигнал после настройки

	dB 16.4 dB	% 78.1 %	Диапазон 250mm СкоростьЗвука 5900m/s НачалоОтсчёта –7mm	Начало
→ 0.0 mm K 0.00	◆ 99.4 mm △	■ 99.4 mm Ф	ТолщинаДетали 300.0mm Датчик 🏡 Частота повт. 200Hz	190mm
			- 100%	Ширина
			80%	19mm
····	· ÷··· · · · · ÷			Высота
				60%
<u>۱</u>			- 	Режим стробов
				Измерение толщины
0 20.0	40. 0	60. 0	80. 0 ШАГ 1	.0 🛃 🚾
Основные Н настройки	lастройки До датчика нас	полнит. Вспомо тройки настро	гат. йки Строб А	Строб В

Рис. 33. Дифференциальное измерение толщины

Ручная регулировка усиления

Ручная регулировка усиления доступна с шагом 0,1 ... 50 дБ. При нахождении в некоторых пунктах меню доступен не весь диапазон шагов регулировки. Для доступа к шагу регулировки 0,1 дБ — необходимо выбрать меню «Наклон пластины» (1–2–1), где шаг фиксированный 0,1. После этого 2 раза нажать на энкодер. Для доступа к шагу 1,0 ... 50 необходимо выбрать меню «Скоросто звука» (1–1–2), где диапазон шага переменный и 2 раза нажать энкодер.

Дефектоскопия сварных швов

Регулируя усиление, добейтесь полного отображения кривой DAC на дисплее, а затем начните дефектоскопию. Во время дефектоскопии датчик, как правило, устанавливается перед сварным швом и выполняет зигзагообразное сканирование вдоль направления сварного шва (срис.34. Диапазон перемещения датчика вдоль сварного шва (вперёд и назад) при толщине детали 25 мм, примерно 100 мм.

Рис. 34. Дефектоскопия сварных швов

Формула для расчета:

S=2KT=2x2x25=100 мм, где К — коэффициент наклона датчика, Т — толщина детали. Скорость, перемещения датчика вдоль сварного шва (влево и вправо) не более 1,5 м/мин. Для гарантированного перекрытия при сканировании — шаг зигзага не должен превышать ширину датчика.

Функция рейтинга AWS

Одновременное включение функций DAC, AVG и AWS — не предусмотрено. Перед включением любой из этих функций — остальные должны быть выключены.

Оценочное значение качества сварных швов на основе рекомендаций Американской ассоциации сварщиков. Требует настройки эхосигнала, а после измерения, получение окончательного результата по специальным таблицам. Оценка дефектов сварных швов основана на оценке амплитуды сигнала. В этом методе амплитуда эхо-сигнала дефекта сравнивается с амплитудой эхо-сигнала известного эталонного отражателя. Кроме того, учитывается затухание звука в объекте испытаний. Результатом является значение в дБ, которое называется классом дефекта. Класс

дефекта D отображающийся в 8 индикаторе 1 области дисплея, рассчитывается по формуле: D = A – B – C, где: A = абсолютное усиление прибора, при котором максимальный эхо-сигнал от дефекта находится на высоте 50 % дисплея. В = абсолютное усиление прибора, при котором максимальный эхосигнал (например, от отверстия диаметром 1,5 мм) составляет 50 % высоты дисплея. С = коэффициент затухания звука (в дБ). Значение рассчитывается по формуле: С = 0,079 дБ/мм • (S – 25,4 мм), где S = путь распространения дефектного эха. Поправка на затухание звука рассчитывается и отображается прибором автоматически. Значение устанавливается равным нулю для звуковых путей, меньших или равных 25,4 мм (1 дюйм). D = класс дефекта (в дБ) Это результат оценки согласно AWS.

Расчет производится в приборе по приведенной выше формуле. Для примера установим датчик как показано на (рис.35). Появление эхосигнала (рис.36) в зоне контроля говорит о наличии отражателя. В данном случае отражателем выступает отверстие Ø 6 мм в мере CO-3P (рис.35), которое и будет выступать в роли дефекта сварного шва. Перемещая датчик добится максимальной-возможной амплитуды эхосигнала, совместить строб с эхосигналом. Регулируя усиление добиться амплитуды эхосигнала диапазоне 45 ... 55% от высоты дисплея (индикатор №3) (рис.36).

Рис. 35. Рейтинг AWS 1

Далее переходим в меню «Рейтинг AWS» (1–3–1) и включаем измерение. После включения функции прибор вычислит значение рейтинга AWS в дБ и отобразит его в индикаторе 8 области 1 дисплея (рис.37). Далее по полученному значению и специальным таблицам определяется класс дефекта. Включение функции и измерения возможно только при амплитуде эхосигнала в диапазоне 45 ... 55% от высоты дисплея.

Рис. 37. Рейтинг AWS 3

Puc. 36. Рейтинг AWS 2

Создание кривой DAC

Одновременное включение функций DAC, AVG и AWS — не предусмотрено. Перед включением любой из этих функций — остальные должны быть выключены.

Для создания кривой DAC необходим(ы) калибровочные меры (в комплект не входят и приобретаются отдельно) подходящие для конкретного измерения, из соответствующего материала, или другой испытательный блок предназначенный для конкретного измерения. Перейдите в меню «Кривая DAC» (2–3), предполагается, что используемый датчик откалиброван.

Перейдите в пункт «Кривая DAC» (2–3–1) и включите кривую DAC выбрав её тип (ломанная или кривая).

Установите датчик на испытательный блок так, чтобы отображался эхосигнал 1 дефекта с максимальной амплитудой. Нажмите кнопку (УСИЛЕНИЕ) и отрегулируйте усиление прибора чтобы пик этого эхосигнала был примерно на высоте 95% от высоты дисплея (рис.38). Перейдите в параметр «Настройка/создание точки» (2–3–3) установите строб на эхосигнал и нажмите кнопку **ОК**) для создания 1 узловой точки (рис.39).

Установите датчик на испытательный блок так, чтобы отображался эхосигнал 2 дефекта с максимальной амплитудой (усиление прибора изменять не нужно), установите на него строб и нажмите кнопку **ОК**) для создания 2 узловой точки (рис.40).

Установите датчик на испытательный блок так, чтобы отображался эхосигнал З дефекта с максимальной амплитудой, установите на него строб и нажмите кнопку **ОК**) для создания З узловой точки (рис.41).

Постройте подобным образом остальные узловые точки (рис. 42, 43). Минимальное количество точек для создания кривой 3, максимальное 10, чем больше будет создано точек, тем точнее будет созданная кривая.

Рис. 42. Создание 4 точки

Если точка создана неправильно, то перейдите в параметр «Узловая точка» (2–3–2) и установите № последней правильно созданной точки. Точки которые были созданы после неё будут удалены. Вернитесь в параметр «Настройка/создание точки» (2–3–3) и создайте узловые точки снова. После создания всех необходимых узловых точек перейдите в параметр «Создание DAC» (2–3–4) и выберите «Создать?». Прибор сгенерирует кривые по созданным узловым точкам (см. рис. 44). Красная кривая — браковочный уровень, жёлтая — контрольный, синяя — оценочный.

Рис. 44.. Создание кривой

Перейдите в меню «Настройка DAC» (2-4). В параметре «Выбор стандарта» выберите 1 из 10 подходящий для вас предустановленный стандарт УЗК (см. рис. 45) Таблица с фиксированными уровнями 10 стандартов приведена выше, в описании пунктов меню. Серая линия — базовый уровень 0 дБ, который построен по узловым точкам, является информационным и в измерении не участвует. Если какой-то из уровней имеет значение 0 дБ, то цвет этого уровня заменяет серый, если ни один из уровней не имеет значения О дБ, то серая линия отображается дополнительно (см. рис. 46).

Рис. 45. Выбор предустановленного стандарта

NP 14	dB 50.6	dB <mark>%</mark> 26	.6 % Диапа Скоро	зон 150mm стьЗвука 2730m/s	Кривая DAC
→ 9.4 m K 2.00	^m ↓ 11.8 △ 0.0	_mm № 26 _dв Ф	.3 mm Толщи Датчи Частот	надетали 150.0mm к 🖗 га повт. 200Hz	Кривая
•				- 100%	Узловая точка
: :				80%	5
•••••					Настройка/ созд. точки
		· · ÷ · · · • • • •	· ÷ · · · · ·		2mm
	-5				Создание DAC
M					Создать?
0 30.	0 60.	0 90.0	120.0	ШАГ	1.0 🛃 (100%)
Калибровка прямого	Калибровка наклонного	Кривая DAC	Настройка DAC	Кривая AVG	Настройка AVG

Рис. 43. Создание 5 точки

Рис. 46 Базовый уровень

Пользователь может создать до 5 своих наборов. Для их создания необходимо в параметре «Выбор стандарта» выбрать значение «Custom 1... 5» (см. рис. 47) и установить необходимые значения уровней (см. рис. 48). После создания и настройки кривых необходимо сохранить их в профиль.

Рис. 47. Создание собственных наборов Рис. 48. Настройка собственного набора

Создание кривой AVG

Одновременное включение функций DAC, AVG и AWS — не предусмотрено. Перед включением любой из этих функций — остальные должны быть выключены.

Для создания кривой AVG войдите в меню «Кривая AVG» (2–5).

Минимальная толщина испытательного блока рассчитывается по формуле:

3 * (D² / (4 * (C / F))) в мм, где:

D — диаметр пластины датчика в мм;

С — 1/1000 скорости звука в материале;

F — частота датчика в МГц.

Например: $3x(20^2/(4x(5,9/2,5))) = 3x(400/(4x(5,9/2,5))) = 3x(400/(4*2,36)) = 3x(400/9,44) =$ 3х42.37 = 127.1 мм.

Округляем до 130 мм. Т.е. для стали со скоростью звука 5900 м/с, датчиком Ø20 мм и частотой 2,5 МГц минимальная толщина для калибровки кривой AVG — будет равна 130 мм. Установите датчик на испытательный блок соответствующий по параметрам к приведённому выше расчёту, получите эхосигнал от донной поверхности (см. рис. 49).

Совместите строб с эхосигналом в меню «Настройка» (2–5–4) (см. рис. 50). Регулируя усиление установите амплитуду сигнала равную примерно 95% от высоты дисплея.

Рис. 49. Получение эхосигнала

Рис. 50 Совмещение строба и эхосигнала, регулировка усиления

Включите кривую AVG (2–5–1), выберите в меню «Тип отражателя» «Отверстие на дне» или «Плоская поверхность» (2–5–2) (см. рис. 51.)

Перейдите в параметр «Калибровка AVG» (2–5–3) и нажмимте **ОК**) Прибор создаст кривую (см. рис. 52).

Рис. 51. Настройка параметров

При необходимости перейдите в меню «Настройка AVG» (2-6) (см. рис. 53), и настройте кривую «Настройка кривой» (2–6–1). Здесь же в параметре «Размер эквивалента» (2–6–2) — можно включить или выключить отображение размера эквивалента в индикаторе 9, области 1 дисплея (см. рис. 54). Если калибровка кривой AVG была совершена с ошибкой, то изменив необходимые значения выполните калибровку снова.

Рис. 53. Настройка кривой

Развёртка В

В приборе предусмотрен режим **«развёртки В»**. Для включения режима необходимо перейти в меню «Дополнит. Функции» (3–5). Выберите пункт «Развёртка В» (3-5-1) (см. рис. 55).

Выберите энкодером «Вкл» появится рабочее окно развёртки В. Параметр «Скорость сканирования» изменяет скорость, «Сканирование» — запускает / оста-

٦P	15	dB 42.6	dB <mark>%</mark> 95	.3 % Диапа: Скорос	вон 250mm тьЗвука 5900m/s	Настройка кривой
→ K	0.0 mm 0.00		_mm № 20 dB Ф	0.3 mm Начало Толщи Датчин Частот	оотсчёта –7mm наДетали 100.0mm < ФП++ а повт. 200Hz	2. 0mm
					- 100%	Размер эквивалента
	···;···;··;			· 	·····	Скрыть
•				·····	• • • • • • • 60%	
•					40%	
		Kni	IBAR AVG			
	<u>N</u> .		1: :		€ M ⁻ ox	
)	50.0) 100.	0 150.	0 200. 0	ШАГ (0.1 🗙 [100%
Ka I	либровка К прямого н	Калибровка наклонного	Кривая DAC	Настройка DAC	Кривая AVG	Настройка AVG
	Рис. 52. Создание кривой				ривой	

Рис. 54. Отображение эквивалента

Рис. 55. Включение развёртки В

навливает сканирование, «Очистка» — очищает область сканирования, «Выход» выход из режима развёртки В (см. рис. 56).

Рис. 56. Развёртка В

После установки необходимой скорости и запуска начинается процесс сканирования (см. рис. 57). Для остановки в параметре «Сканирование» выберите «Остановить», для очистки поля в параметре «Очистка» нажмите **ОК**. Для выхода из режима «развёртки В» в параметре «Выход» нажмите кнопку (ОК).

Рис. 57. Сканирование развёртки В

• ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

ПО для ПК находится в разработке. Данная предварительная версия позволяет просматривать сохраненное на приборе видео перенесённое на ПК и создать отчёт, для создания последнего необходим установленный пакет «Microsoft office». ПО запускается без инсталяции. Содержимое каталога с ПО ниже (см. рис. 69).

Имя	Дата изменения	Тип	Размер
resources	26.07.2023 12:04	Папка с файлами	
libgcc_s_dw2-1.dll	26.07.2023 12:04	Расширение при	115 KE
libstdc++-6.dⅡ	26.07.2023 12:04	Расширение при	949 KE
libwinpthread-1.dll	26.07.2023 12:04	Расширение при	48 KE
QtCored4.dll	26.07.2023 12:04	Расширение при	39 469 KE
QtGuid4.dll	26.07.2023 12:04	Расширение при	186 083 KE
🔍 up_v0002.exe	26.07.2023 12:04	Приложение	6 573 KБ

Рис. 69. Каталог ПО

Запустите ПО кликнув по исполняемому файлу «up_v0002.exe». ПО запуститься, появится рабочее окно (см. рис. 59).

• ОПИСАНИЕ ЭЛЕМЕНТОВ РАБОЧЕГО ОКНА ПО

- Кнопка «Открыть файл эхограммы»;
- 2 Кнопка «Открыть файл видео»;
- В Кнопка «Создание отчёта»;
- Ф Временная линейка просмотра видео;
- БКнопка приостановки видеозаписи;
- 6 Кнопка изменения скорости видеозаписи;
- 7 Кнопка перемотки назад;
- В Кнопка перемотки вперёд;
- Ополе для отображения эхограммы при воспроизведении видео;
- 🔟 Поле для отображения текущих параметров при воспроизведении видео.

• ПРОСМОТР ВИДЕО

После запуска ПО нажмите кнопку (2) «Open video file» и укажите путь, где сохранён видеофайл. Во время просмотра видео, его можно приостановить нажав кнопку (5) «Pause». Увеличить или уменьшить скорость просмотра можно кнопкой (6) «Speed». Перемотать назад кнопкой (7) «Back».Перемотать вперёд кнопкой (8) «Advance». После окончания просмотра видеофайла повторный его просмотр — невозможен. Для повторного просмотра загрузите файл снова.

• СОЗДАНИЕ ОТЧЁТА

Для создания отчёта загрузите изображение нажав кнопку (1) «Open the screenshot file» и укажите путь к файлу. После загрузки файла нажмите кнопку (3) «Generate report», ПО запустит пакет «Microsoft office», на запрос о перезаписи существующего отчёта ответьте отрицательно и задайте новое имя файла. ПО передаст в него шаблон отчёта и изображение, после этого автоматически завершит работу. Шаблон отчёта находится в папке «Resources», его можно модифицировать под себя или создать свой с рабочим именем. Кроме этого отчёты можно создавать в любом текстовом редакторе вставив в документ изображение перенесённое с прибора.

При отсутствии установленного пакета «Microsoft office», после нажатия кнопки (3) «Generate report» — ПО завершит работу без передачи данных.

• ТИПОВЫЕ НЕИСПРАВНОСТИ (см. табл. 21)

Таблица 21 — Типовые неисправности

Описание неисправности	Вероятная причина	Устранение
Прибор не включается	Разряжен аккумулятор	Зарядите аккумулятор, подключите прибор к зарядному устройству
Во время зарядки часто мигает индикатор	Сбой процесса зарядки	Отключить зарядное устройство, включить прибор на 1 мин. Выключить прибор. Подключить зарядное устройство снова
Неадекватное поведение ПО прибора, зависание	Неправильные действия пользователя	Выключите и через 10 сек. ключите прибор снова. Загрузите чистый профиль, потом снова рабочий
Не включается какая–либо функция	Не выполнено условие для включения функции	Выполните все необходимые условия
Точность измерений не соответствует заявленной	Неправильная калибровка	Проведите калибровку датчика заново
Заполнена внутренняя память, при отсутствии файлов	Сбой счётчика памяти	Скопируйте всё необходимое на USB-накопитель и отформатируйте внутреннюю память (команда «Очистка» в файловом менеджере).

• ТЕХНИЧЕСКИЕ И МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 22 — Метрологические характеристики

Параметр	Значение
Диапазон измерения толщины по стали, мм	от 20 до 1500
Пределы допускаемой абсолютной погрешности измерения толщины (по стали), мм	±(0,03·T ¹)+1,0)
Диапазон измерений глубины залегания дефектов (по стали), мм	от 4 до 600
Пределы допускаемой абсолютной погрешности измерений глубины залегания дефектов (по стали) с прямыми преобразователями, мм	±(0,03·H ²)+1,0)
Диапазон измерений координат дефектов (по стали), мм	от 4 до 600
Пределы допускаемой абсолютной погрешности измерений коор- динат дефектов (по стали) с наклонными преобразователями, мм	±(0,03·Y ³)+1,0)
Пределы допускаемой абсолютной погрешности измерений коорди- нат дефектов по стали с наклонными преобразователями от точки ввода до проекции дефекта на поверхность сканирования, мм ⁴)	±(0,03·X ⁵)+1,0)
¹⁾ Т — измеренное значение толщины (по стали), мм; ²⁾ Н — измеренное значение глубины залегания дефектов, мм;	

³⁾ Y — измеренное значение координат дефектов, мм;

⁴⁾ В диапазоне измерений координат дефектов (по стали) от 4 до 600 мм;

⁵⁾ Х — измеренное значение координаты от точки ввода до проекции дефекта на поверхность сканирования, мм.

Таблица 23 — Основные технические характеристики

Параметр Значение Диапазон показаний толщины по стали, мм от 4 до 1500 Диапазон рабочих частот, МГц от 0,5 до 20 с шагом 0,1 Диапазон настройки скорости от 0,5 до 20 с шагом 0,1 ультразвука в материалах, м/с от 0 до 120 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50 Диапазон настройки усиления, дБ от 0 до 120 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50 Габаритные размеры, мм: длина/ ширина/ высота 250/ 160/ 60 Масса, кг 1,1 ± 0,1 Условия эксплуатации: - температура окружающей среды, °C; от 50 до 80 от 50 до 80 Условия транспортировки и хранения Темп: От -20 до +60°C; 05 до 20% - 85%, без выпадения конденсата Ёмкость внутренней памяти 2 Гб, 100 эхограмм А-развертки, 500 профилей, видеозаписи до заполнения памяти 2 Гб, 100 эхограмм А-развертки, 500 профилей, видеозаписи до заполнения памяти Калибровка полуавтоматическая есть Запоминание пиковых значений USB 1 Питание Ці-Ро, 11,1 В — 3600 мАч 4 Адаптер питания ВКК -дисплей повышенной чёткости и яркости, цветной 5,7 дюймов А-развёртка, В-развёртка Дисплей ВКК -дисплей повышенной чёткости и яркости, цветный п		1	
Диапазон показаний толцины по стали, мм) от 4 до 1500 Диапазон настройки скорости ультразвука в материалах, м/с Диапазон настройки скорости ультразвука в материалах, м/с Диапазон настройки усиления, дБ от 100 до 9999 с шагом 1; 2; 4; 6; 8; 10; 20; 50 Габаритные размеры, мм: длина/ ширина/ высота 250/ 160/ 60 Масса, кг 1,1 ± 0,1 Условия эксплуатации: - температура окружающей среды, °C; - относительная влажность воздуха, % Условия транспортировки и хранения Ёмкость внутренней памяти Калибровка Настройка кривой АVG Сохранение эхограммы Запоминание пиковых значений Интерфейс Питание Дисплей Развертки Чилок каналов дефектоскопии Типы датчиков Входы, режим работы Диалазон, мстализиков Диалазон полуавтоматичков Сохранение зограммы Входы, режим работы	Параметр	Значение	
Диапазон рабочих частот, МГц от 0,5 до 20 с шагом 0,1 Диапазон настройки скорости ультразвука в материалах, м/с от 100 до 9999 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50 Диапазон настройки усиления, дБ от 0 до 120 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50 Габаритные размеры, мм: длина/ ширина/ высота 250/ 160/ 60 Масса, кг 1,1 ± 0,1 Условия эксплуатации: - температура окружающей среды, °C; - относительная влажность воздуха, % от 50 до 80 Условия транспортировки и хранения Темп.: От -20 до +60°C; OB: 20% – 85%, без выпадения конденсата ёмкость внутренней памяти 2 Гб, 100 эхограмм А-развертки, 500 про- филей, видеозаписи до заполнения памяти Калибровка полуавтоматическая Настройка кривой АVG есть Запоминание пиковых значений USB Питание Ц:-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 100–240 B/ 50–60 Гц Дисплей ВNC ЯкК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, B-развёртка Цисло каналов дефектоскопии 0 Совмещенный прямой (CS); О совмещенный прямой (SC); 9 Раздельно-совмещенный прямой (SC); О совмещенный прямой (SS) Разде	Диапазон показаний толщины по стали, мм	от 4 до 1500	
Диапазон настройки скорости ультразвука в материалах, м/с Диапазон настройки усиления, дБ Габаритные размеры, мм: длина/ ширина/ высота Дилина/ ширина/ валамность воздуха, % От 50 до 80 Условия транспортировки и хранения Ёмкость внутренней памяти Калибровка Пастройка кривой АVG Сохранение эхограммы Запоминание пиковых значений Интерфейс Питание Ці-Ро, 11,1 В — 3600 мАч На входе: 100–240 В/ 50–60 Гц На выходе: 13,5 В/ 2 А ВNC Дисплей Развертки Число каналов дефектоскопии Питаников Пиль датчиков Входы, режим работы Дислоканалов дефектоскопии Входы, режим работы Дислоканалов дала саматы Созраненый прямой (SS); Пильи датчиков Входы, режим работы Созранених датчиков	Диапазон рабочих частот, МГц	от 0,5 до 20 с шагом 0,1	
ультразвука в материалах, м/с Диапазон настройки усиления, дБ Габаритные размеры, мм: длина/ ширина/ высота 250/ 160/ 60 Масса, кг 1,1 ± 0,1 Условия яксплуатации: - температура окружающей среды, °C; - относительная влажность воздуха, % Условия транспортировки и хранения Ёмкость внутренней памяти Калибровка Настройка кривой AVG Сохранение эхограммы Запоминание пиковых значений Интерфейс Питание Дисплей Развертки Цисло каналов дефектоскопии Типы датчиков Входы, режим работы Ульта сотнос до 505 с шогом, 12, 1; 2; 4; 6; 8; 10; 20; 50 от 0 до 120 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50 от 0 до 120 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50 от 150 до 80 От +15 до +35; от 50 до 80 Темп.: От -20 до +60°С; ОВ: 20% – 85%, без выпадения конденсата 2 Го; 100 эхограмм А-развертки, 500 про- филей, видеозаписи до заполнения памяти Филей, видеозаписи до заполнения памяти иолуавтоматическая Сохранение эхограммы Запоминание пиковых значений Интерфейс Питание 4 а входе: 13,5 В / 2 А ВNC ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов А-развёртка, В-развёртка 1 О совмещенный прямой (CS); 9 Раздельно-совмещенный прямой (SCS); 9 Раздельно-совмещенный прямой (SCS); 9 Раздельно-совмещенный прямой (SCS); 9 Раздельный прямой (SS) Т — выход, R — вход / выход для совме- щённых датчиков	Диапазон настройки скорости	от 100 до 0000 с шасом 1· 7· /н 6· 8· 10· 70· 50	
Диапазон настройки усиления, дБ от 0 до 120 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50 Габаритные размеры, мм: длина/ ширина/ высота 250/ 160/ 60 Масса, кг 1,1 ± 0,1 Условия эксплуатации: от 10 до 120 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50 - относительная влажность воздуха, % от 15 до +35; - относительная влажность воздуха, % от 50 до 80 Условия транспортировки и хранения Temn: 0T -20 до +60°C; Условия транспортировки и хранения 2 Гб, 100 эхограмм А-развертки, 500 профилей, видеозаписи до заполнения памяти Калибровка полуавтоматическая Настройка кривой АVG сохранение эхограммы Запоминание пиковых значений есть Запоминание пиковых значений USB Питание Ці-Ро, 11,1 В — 3600 мАч На входе: 100-240 В/ 50-60 Гц На выходе: 13,5 В/ 2 А Тип разъема датчиков BNC ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка Число каналов дефектоскопии Число каналов дефектоскопии 1 Входы, режим работы Совмещенный прямой (SC); Входы, режим работы Совмещенный прямой (SS) Т — выход, R — вход для раздельных датчиков; </td <td>ультразвука в материалах, м/с</td> <td></td>	ультразвука в материалах, м/с		
Габаритные размеры, мм: длина/ ширина/ высота 250/160/ 60 Масса, кг 1,1 ± 0,1 Условия эксплуатации: - температура окружающей среды, °C; - относительная влажность воздуха, % Условия транспортировки и хранения 21 б, 100 эхограмм А-развертки, 500 про- филей, видеозаписи до заполнения памяти Калибровка полуавтоматическая Настройка кривой АVG Сохранение эхограммы Запоминание пиковых значений Интерфейс USB Питание Li-Po, 11,1 В — 3600 мАч На входе: 100-240 B/ 50-60 Гц На выходе: 13,5 B/ 2 A Тип разъема датчиков BNC Дисплей Алибор дефектоскопии 1 Типы датчиков дефектоскопии 1 Типы датчиков дефектоскопии 1 Бходы, режим работы Сосудаля совмещенный прямой (SCS); Входы, режим работы Сосудаля совмещённых датчиков	Диапазон настройки усиления, дБ	от 0 до 120 с шагом 0,1; 1; 2; 4; 6; 8; 10; 20; 50	
длина/ ширина/ высота 250/ 160/ 60 Масса, кг 1,1 ± 0,1 Условия эксплуатации: ot 1,1 ± 0,1 - температура окружающей среды, °C; ot 50 до 80 Относительная влажность воздуха, % ot 50 до 80 Условия транспортировки и хранения Темп:: Ot -20 до +60°C; ВКОСТЬ внутренней памяти Темп:: Ot -20 до +60°C; Калибровка полуавтоматическая Настройка кривой AVG есть Сохранение эхограммы есть Запоминание пиковых значений USB Питание Ui-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 13,5 B/ 2 A Тип разъема датчиков BNC Дисплей А-развёртка Число каналов дефектоскопии 1 Совмещенный прямой (SC); Освмещенный прямой (SC); Входы, режим работы Тип выхода, R — вход / выход для совмещённых датчиков;	Габаритные размеры, мм:		
Масса, кг 1,1 ± 0,1 Условия эксплуатации: от +15 до +35; - температура окружающей среды, °C; от 50 до 80 Относительная влажность воздуха, % от 50 до 80 Условия транспортировки и хранения Темп:: От -20 до +60°C; ОВ: 20% – 85%, без выпадения конденсата Ёмкость внутренней памяти 2 Гб, 100 эхограмм А-развертки, 500 профилей, видеозаписи до заполнения памяти Калибровка полуавтоматическая Настройка кривой AVG есть Сохранение эхограммы весть Запоминание пиковых значений USB Интерфейс USB Питание Li-Po, 11,1 В — 3600 мАч Адаптер питания На входе: 100–240 В/ 50–60 Гц Дисплей ВNC Дисплей ВNC Дисплей ВNC Типы датчиков СС Совмещенный прямой (CS); О Совмещенный прямой (CS); Раздельно-совмещенный прямой (SC); О Раздельно-совмещенный прямой (SS) Раздельно-совмещенный прямой (SS) Входы, режим работы Т — выход, R — вход для раздельных датчиков; T, R — вход / выход для совмещённых датчиков	длина/ ширина/ высота	250/160/60	
Условия эксплуатации: - температура окружающей среды, °C; - относительная влажность воздуха, % Условия транспортировки и хранения Ёмкость внутренней памяти Калибровка Настройка кривой АVG Сохранение эхограммы Запоминание пиковых значений Интерфейс Питание Ці-Ро, 11,1 В — 3600 мАч На входе: 100–240 В/ 50–60 Гц На выходе: 13,5 В/ 2 А Тип разъема датчиков Развертки Цислок каналов дефектоскопии Типы датчиков Развертки Число каналов дефектоскопии Типы датчиков Входы, режим работы Хкладисла сама совмещенный прямой (CS); Входы, режим работы	Масса, кг	1,1 ± 0,1	
- температура окружающей среды, °C; - относительная влажность воздуха, % Условия транспортировки и хранения Ёмкость внутренней памяти Калибровка Настройка кривой AVG Сохранение эхограммы Запоминание пиковых значений Интерфейс Питание Ці-Ро, 11,1 В — 3600 мАч На входе: 100-240 В/ 50-60 Гц На выходе: 13,5 В/ 2 А Тип разъема датчиков Развертки Число каналов дефектоскопии Типы датчиков Бходы, режим работы Сохранеми работы Сохранение за страмой (SS) Типе выход, R — вход для раздельных датчиков Сохранение за среды, °C; от +15 до +35; от 50 до 80 Темп.: От -20 до +60°C; ОВ: 20% – 85%, без выпадения конденсата 2 Гб, 100 эхограмм А-развертки, 500 про- филей, видеозаписи до заполнения памяти Сохранение эхограммы Сохранение эхограммы Сохранение эхограммы Вис Сохранение эхограммы Сохранение эхограммы ВNC Сохранение эхограммы Сохранение эхограммы ВNC Сохранение эхограммы Сохранение эхограммы Сохранение эхограммы ВNC Сохранение эхограммы Сохранение эхограмма Сохранение эхограмма Сохранение эхограмма Сохранение эхограмма Сохранение эхограмма Сохранение эхограмма Сохранение эхограмма Сохранение эхограмма Сосрамещенный прямой (CS); Совмещенный прямой (SS) Совмещенный прямой (SS)	Условия эксплуатации:		
от 50 до 80 Условия транспортировки и хранения Ёмкость внутренней памяти Калибровка Настройка кривой АVG Сохранение эхограммы Запоминание пиковых значений Интерфейс Питание Ці-Ро, 11,1 В — 3600 мАч На входе: 100-240 В/ 50-60 Гц На выходе: 100-240 В/ 50-60 Гц На выходе: 13,5 В/ 2 А Тип разъема датчиков Развертки Число каналов дефектоскопии Типы датчиков Типы датчиков Входы, режим работы От 50 до 80 Темп.: От -20 до +60°С; ОВ: 20% – 85%, без выпадения конденсата 2 Гб, 100 эхограмм А-развертки, 500 про- филей, видеозаписи до заполнения памяти полуавтоматическая есть Сохранение эхограммы Запоминание пиковых значений Интерфейс Питание Ці-Ро, 11,1 В — 3600 мАч На входе: 100-240 В/ 50-60 Гц На выходе: 13,5 В/ 2 А ВNC ФИС ОСовмещенный повышенной чёткости и яркости, цветной 5,7 дюймов А-развёртка О Совмещенный прямой (CS); 9 Раздельно-совмещенный прямой (SCS); 9 Раздельно-совмещенный прямой (SCS); 9 Раздельный прямой (SS) Т — выход, R — вход для раздельных датчиков; T, R — вход для раздельных щённых датчиков	- температура окружающей среды, °С;	от +15 до +35;	
Условия транспортировки и хранения Темп.: От -20 до +60°С; ОВ: 20% – 85%, без выпадения конденсата Ёмкость внутренней памяти 2 Гб, 100 эхограмм А-развертки, 500 профилей, видеозаписи до заполнения памяти Калибровка полуавтоматическая Настройка кривой АVG есть Запоминание пиковых значений USB Интерфейс USB Питание Li-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 100-240 B/ 50-60 Гц На выходе: 13,5 B/ 2 А ВNC Дисплей ЖК-дисплей повышенной чёткости Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Совмещенный прямой (CS); Входы, режим работы Т – выход, R – вход для раздельных датчиков; T, R – вход / выход для совмещённых датчиков	- относительная влажность воздуха, %	от 50 до 80	
Условия транспортировки и хранения OB: 20% – 85%, без выпадения конденсата Смкость внутренней памяти 2 Гб, 100 эхограмм А-развертки, 500 профилей, видеозаписи до заполнения памяти Калибровка полуавтоматическая Настройка кривой АVG есть Сохранение эхограммы есть Запоминание пиковых значений USB Питание Li-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 100-240 B/ 50-60 Гц На выходе: 13,5 B/ 2 A ВNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Совмещенный прямой (CS); Совмещенный прямой (SC); Входы, режим работы Т- выход, R — вход для раздельных датчиков	N.	Темп.: От -20 до +60°С;	
Ёмкость внутренней памяти 2 Гб, 100 эхограмм А-развертки, 500 профилей, видеозаписи до заполнения памяти Калибровка полуавтоматическая Настройка кривой АVG есть Сохранение эхограммы есть Запоминание пиковых значений Интерфейс Интерфейс USB Питание Li-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 100-240 B/ 50-60 Гц На выходе: 13,5 B/ 2 A ВNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Совмещенный прямой (CS); Входы, режим работы Т- выход, R — вход для раздельных датчиков	условия транспортировки и хранения	ОВ: 20% – 85%, без выпадения конденсата	
Емкость внутренней памяти филей, видеозаписи до заполнения памяти Калибровка полуавтоматическая Настройка кривой AVG есть Сохранение эхограммы есть Запоминание пиковых значений итерфейс Интерфейс USB Питание Li-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 100-240 B/ 50-60 Гц На выходе: 13,5 B/ 2 A ВNC Дисплей ЖК-дисплей повышенной чёткости Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Ф. Совмещенный прямой (CS); Входы, режим работы Совмещенный прямой (SS) Тиле входы, режим работы Т. – выход, R – вход для раздельных датчиков	Ë	2 Гб, 100 эхограмм А-развертки, 500 про-	
Калибровка полуавтоматическая Настройка кривой АVG есть Запоминание пиковых значений есть Интерфейс USB Питание Li-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 100-240 B/ 50-60 Гц Адаптер питания На выходе: 13,5 B/ 2 A Тип разъема датчиков BNC Дисплей ЖК-дисплей повышенной чёткости Развертки А-развёртка, B-развёртка Число каналов дефектоскопии 1 Типы датчиков Совмещенный прямой (CS); Раздельно-совмещенный наклонный (SC); Раздельно-совмещенный наклонный (SC); Раздельно-совмещенный прямой (SS) Т- выход, R — вход для раздельных датчиков; T, R — вход / выход для совмещённых датчиков	Емкость внутренней памяти	филей, видеозаписи до заполнения памяти	
Настройка кривой АVG есть Сохранение эхограммы есть Запоминание пиковых значений USB Интерфейс USB Питание Li-Po, 11,1 B – 3600 мАч Адаптер питания На входе: 100-240 B/ 50-60 Гц Адаптер питания На выходе: 13,5 B/ 2 А Тип разъема датчиков BNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Ф Ф Ф Входы, режим работы Товыход, R — вход для раздельных датчиков	Калибровка	полуавтоматическая	
Сохранение эхограммы есть Запоминание пиковых значений И Интерфейс USB Питание Li-Po, 11,1 B – 3600 мАч Адаптер питания На входе: 100–240 B/ 50–60 Гц Адаптер питания На входе: 13,5 B/ 2 A Тип разъема датчиков BNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Ф Ф Ф Входы, режим работы Т	Настройка кривой AVG		
Запоминание пиковых значений Интерфейс USB Питание Li-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 100-240 B/ 50-60 Гц Адаптер питания На выходе: 13,5 B/ 2 A Тип разъема датчиков BNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Ф Ф Ф Входы, режим работы Т	Сохранение эхограммы	есть	
Интерфейс USB Питание Li-Po, 11,1 B — 3600 мАч Адаптер питания На входе: 100-240 B/ 50-60 Гц Тип разъема датчиков BNC Дисплей BNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Ф Ф Ф Входы, режим работы Т	Запоминание пиковых значений		
Питание Li-Po, 11,1 В — 3600 мАч Адаптер питания На входе: 100–240 В/ 50–60 Гц Тип разъема датчиков BNC Дисплей ВNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Ферерации Совмещенный прямой (CS); Входы, режим работы Товыход, R — вход для раздельных датчиков; T, R — вход / выход для совмещённых датчиков	Интерфейс	USB	
Адаптер питания На входе: 100–240 В/ 50–60 Гц Тип разъема датчиков BNC Дисплей WK–дисплей повышенной чёткости Дисплей ЖК–дисплей повышенной чёткости Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Ф Ф Ф Ф Ф Вис 1 Совмещенный прямой (CS); Совмещенный наклонный (CI); В Раздельно-совмещенный прямой (SCS); Раздельно-совмещенный наклонный (SCI); Вис Типы датчиков Ф Ф Ф Ф Вис Вис Вис 1 Висло каналов дефектоскопии 1 </td <td>Питание</td> <td>Li–Po, 11,1 B — 3600 мАч</td>	Питание	Li–Po, 11,1 B — 3600 мАч	
Адаптер питания На выходе: 13,5 В/ 2 А Тип разъема датчиков ВNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Фенерации Гипы датчиков Фенерации Входы, режим работы Т- выход, R — вход для раздельных датчиков; T, R — вход / выход для совме- щённых датчиков	0	На входе: 100–240 В/ 50–60 Гц	
Тип разъема датчиков BNC Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Фереектоскопии Типы датчиков Фереектоскопии Входы, режим работы Т- выход, R — вход для раздельных датчиков; T, R — вход / выход для совме- щённых датчиков	Адаптерпитания	На выходе: 13,5 В/ 2 А	
Дисплей ЖК-дисплей повышенной чёткости и яркости, цветной 5,7 дюймов Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Совмещенный прямой (CS); Фенерации Совмещенный наклонный (CI); Входы, режим работы Типы датчиков	Тип разъема датчиков	BNC	
и яркости, цветной 5,7 дюймов А-развёртка, В-развёртка Число каналов дефектоскопии 1 Совмещенный прямой (CS); 2 Совмещенный наклонный (CI); 3 Раздельно-совмещенный прямой (SCS); 4 Раздельно-совмещенный наклонный (SCI); 5 Раздельный прямой (SS) T — выход, R — вход для раздельных датчиков; T, R — вход / выход для совме- щённых датчиков		ЖК–дисплей повышенной чёткости	
Развертки А-развёртка, В-развёртка Число каналов дефектоскопии 1 Типы датчиков Фаздельно-совмещенный прямой (CS); Фаздельно-совмещенный прямой (SCS); 3 Раздельно-совмещенный наклонный (SCI); 9 Входы, режим работы Тока совмещенных датчиков	дисплеи	и яркости, цветной 5,7 дюймов	
Число каналов дефектоскопии 1 По Совмещенный прямой (CS); Совмещенный наклонный (CI); По Совмещенный наклонный (CI); Раздельно-совмещенный прямой (SCS); По Совмещенный наклонный (CI); Раздельно-совмещенный наклонный (SCI); По Совмещенный прямой (SCS); Раздельно-совмещенный наклонный (SCI); По Совмещенный прямой (SCS); По Совмещенный прямой (SCS); По совмещенный прямой (SCS); По совмещенный прямой (SC); По совмещенный прямой (SC); По совмещенный прямой (SC); По совмещенный прямой (SCS); По совмещенный прямой (SC); Входы, режим работы По совмещенных датчиков; По совмещенных датчиков; По совмещенных датчиков;	Развертки	А-развёртка, В-развёртка	
 1 Совмещенный прямой (CS); 2 Совмещенный наклонный (CI); 3 Раздельно-совмещенный прямой (SCS); 4 Раздельно-совмещенный наклонный (SCI); 5 Раздельный прямой (SS) 8 Коды, режим работы 1 Совмещенный прямой (CS); 2 Совмещенный наклонный (SCI); 3 Раздельно-совмещенный наклонный (SCI); 5 Раздельный прямой (SS) 7 — выход, R — вход для раздельных датчиков; T, R — вход / выход для совмещённых датчиков 	Число каналов дефектоскопии	1	
 Типы датчиков Совмещенный наклонный (Cl); Раздельно-совмещенный наклонный (SCS); Раздельно-совмещенный наклонный (SCI); Раздельный прямой (SS) Т — выход, R — вход для раздельных датчиков; T, R — вход / выход для совмещенных датчиков 		Овмешенный прямой (С5).	
Типы датчиков Типы датчиков Типы датчиков Типы датчиков Типы датчиков Т — выход, R — вход для раздельных датчиков; T, R — вход / выход для совме- щённых датчиков		Совмещенный наклонный (СІ):	
 Входы, режим работы Входы, режим работы			
 Раздельно-совмещенный наклонный (SCI), Раздельный прямой (SS) Т — выход, R — вход для раздельных датчиков; T, R — вход / выход для совмещенных датчиков 			
Входы, режим работы Т — выход, R — вход для раздельных датчиков; T, R — вход / выход для совмещённых датчиков		С Воздельно-совмещенный наклонный (эсл),	
Т — выход, R — вход для раздельных Входы, режим работы датчиков; T, R — вход / выход для совме- щённых датчиков		и саздельный прямой (55)	
Входы, режим работы датчиков; Т, R — вход / выход для совме- щённых датчиков		Т — выход, R — вход для раздельных	
Щённых датчиков	Входы, режим работы	датчиков; Т, R — вход / выход для совме-	
		Щённых датчиков	

• МЕРЫ ПРЕДОСТОРОЖНОСТИ

• Если после включения прибора уровень заряда аккумулятора 25% или ниже, то во • Данные, используемые в инструкции по эксплуатации, предназначены только

избежание отключения прибора из-за разряда аккумулятора, его следует зарядить. для удобства пользователя, чтобы понять, как будет отображаться информация. Во время измерений будут получены конкретные данные измерений!

• Не роняйте прибор, защитите его от вибрации и ударов.

ОСОБОЕ ЗАЯВЛЕНИЕ

Утилизируйте использованные аккумуляторы в соответствии с действую-Ø щими требованиями и нормами вашей страны проживания.

🔵 СОВЕТЫ ПО ЭКСПЛУАТАЦИИ АККУМУЛЯТОРА

Чтобы аккумулятор служил долго — рекомендуется придерживаться общих правил зарядки и эксплуатации аккумуляторов, а именно:

• Заряжать аккумулятор полностью пока зарядка не прекратиться, (погаснет красный индикатор на панели).

- Начинать заряжать аккумулятор, когда он почти полностью разряжен.
- Не рекомендуется использовать при температуре ниже 0°С.
- Не использовать непредусмотренные зарядные устройства.

• Когда прибор не будет использоваться долгое время, зарядите аккумулятор и удалите его из прибора, чтобы избежать разряда и старения аккумулятора (даже если прибор не работает — аккумулятор медленно разряжается).

• Не храните прибор с разряженным аккумулятором, периодически проверяйте состояние аккумулятора и заряжайте при необходимости.

Хранение разряженного аккумулятора сильно сокращает срок его службы.

УХОД И ХРАНЕНИЕ

Не храните прибор в местах, где возможно попадание влаги или пыли внутрь корпуса, мест с высокой концентрацией активных химических веществ в воздухе. Не подвергайте прибор воздействию внешних вибраций, высоких температур (≥60°С), влажности (≥85%) и прямых солнечных лучей. Не протирайте прибор высокоактивными и горючими жидкостями, промасленной ветошью и др. загрязнёнными материалами. Используйте специальные салфетки для бытовой техники. Перед хранением рекомендуется очистить

и высушить прибор и приспособления. Недопустимо применение жестких и абразивных материалов для чистки корпуса прибора, используйте мягкую слегка влажную чистую ткань.

ВНУТРИ ПРИБОРА 07 НЕТ ЧАСТЕЙ ДЛЯ ОБСЛУЖИВАНИЯ конечным ПОЛЬЗОВАТЕЛЕМ

СРОК СЛУЖБЫ

Срок службы прибора 3 года. Указанный срок службы действителен при соблюдении потребителем требований настоящего руководства.

ГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ

Для получения обслуживания следует предоставить прибор в чистом виде, полной комплектации и следующие данные:

- Контактная информация;
- **2** Описание неисправности;
- В Модель:
- 4 Серийный номер (при наличии);
- 5 Документ, подтверждающий покупку (копия);
- 6 Информацию о месте приобретения.

Пожалуйста, обратитесь с указанной выше информацией к дилеру или в компанию «МЕГЕОН». Прибор, отправленный, без всей указанной выше информации будет возвращен клиенту без ремонта.

КОМПЛЕКТ ПОСТАВКИ

- Дефектоскоп МЕГЕОН 29120 1 шт.;
- **2** Зарядное устройство с кабелем 1 шт.;
- ЭДатчики 2 шт.;
- 4 Кабель датчика 2 шт.;
- 5 Руководство по эксплуатации/ паспорт 1экз.

ПАСПОРТ

- Наименование изделия: Дефектоскоп ультразвуковой МЕГЕОН 29120.
- 2 Дата изготовления:
- B Заводской номер:

• СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Дефектоскоп ультразвуковой МЕГЕОН 29120 изготовлен и принят в соответствии с стандартом предприятия «Дефектоскопы ультразвуковые МЕГЕОН» и признан годным для эксплуатации.

Начальник ОКК

М.П.

© МЕГЕОН. Все материалы данного руководства являются объектами авторского права (в том числе дизайн). Запрещается копирование (в том числе физическое копирование), перевод в электронную форму, распространение, перевод на другие языки, любое полное или частичное использование информации или объектов (в т.ч. графических), содержащихся в данном руководстве без письменного согласия правообладателя. **Допускается** цитирование с обязательной ссылкой на источник.