
EAЭC N RU Д-RU.PA09.B.77548/24

TY 4862-001-85523656-2015 TP TC 010/2011 TP TC 004/2011 TP TC 020/2011

ПАСПОРТ ТЕХНИЧЕСКИЙ Руководство по монтажу и эксплуатации ВЕНТИЛЯТОР КУХОННЫЙ NAVEKA VK / VKS

Назначение и область применения

Кухонный вентилятор представляет собой механическое устройство, предназначенное для удаления воздуха из помещений горячих цехов. Электродвигатель у данной модели вынесен из потока воздуха, что предотвращает скапливание на нем жира и минимизирует воздействие высоких температур вытяжного воздуха, тем самым продлевается срок службы электродвигателя и понижается пожарная опасность.

В линейке два исполнения:

VK – корпус из оцинкованной стали без изоляции

VKS – корпус шумоизолированный - каркасно-панельный. Панели заполнены негорючей минеральной изоляцией. Стандартно толщина изоляции 50 мм.

Перед вентилятором следует применять жироулавливающие фильтры, чтобы максимально снизить попадание липких веществ на рабочее колесо вентилятора. Для сохранения работоспособности следует периодически осуществлять очистку рабочего колеса.

Для снижения передачи вибрации в комплект поставки вентиляторов входят виброопоры.

Всасывающее подключение, расположенное на торце вентилятора, имеет круглую форму. Нагнетательный проем имеет прямоугольную форму и стандартно направлен вверх. Однако, может быть перенаправлен в боковые стороны.

Температура перемещаемого воздуха: -25 +70°C, без образования конденсата. Для защиты от конденсата следует применять изолирующие материалы.

Температура эксплуатации двигателя: -40 +40°C. Для защиты от осадков для исполнения VK следует предусматривать защитный кожух, который может быть заказан опционально (или организовать навес). В исполнении VKS двигатель уже защищен от осадков корпусом.

Электродвигатель стандартно устанавливается трехфазный на напряжение 380 В+- 10%. По запросу вентилятор может быть оснащен однофазным двигателем 220В.

У исполнения VKS в отсеке двигателя предусмотрены окна для естественной вентиляции двигателя. Окна выхода теплого воздуха расположены на боковых сторонах, а окно забора свежего воздуха — на нижней панели. Следует предотвращать перекрытие этих окон посторонними предметами. Для защиты окна оснащены перфорированными сетками.

Скорость вращения вентиляторов можно регулировать частотными преобразователями для трехфазных электродвигателей. Следует помнить, что работа на повышенных оборотах вызывает повышенный шум, вибрацию и снижает ресурс работы вентилятора. Рекомендуется выбирать диаметр колеса таким образом, чтобы рабочая частота была не более 3000 об/мин.

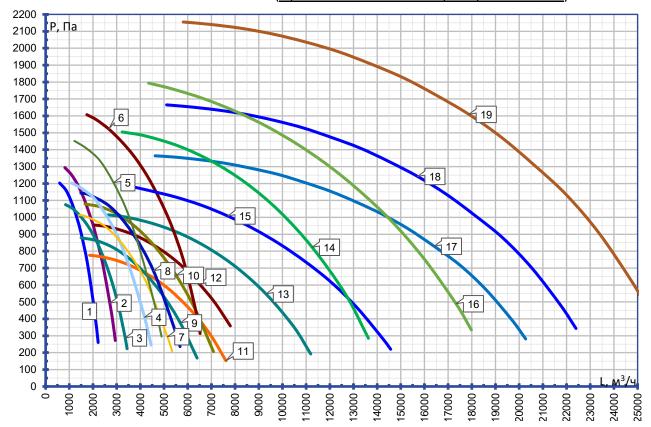
При работе с частотным регулятором у двигателя может появляться дополнительный шум, связанный с изменением характеристики питающей сети.

В каталоге представлены базовые модели. По индивидуальному заказу возможно изготовление кухонных вентиляторов других габаритов, размеров подключения и напряжения сети.

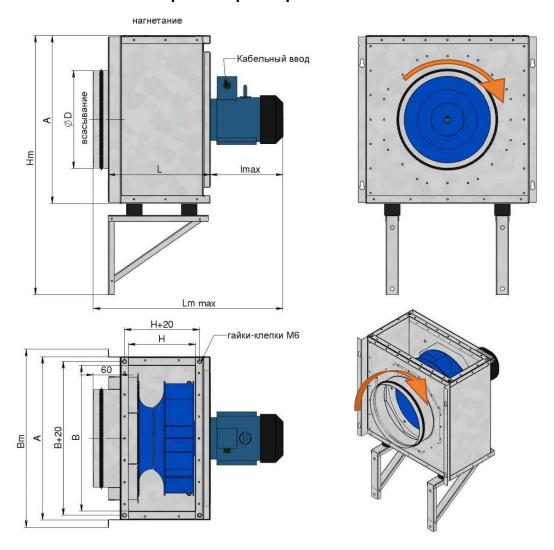
Для снижения передачи вибраций от вентилятора следует применять гибкие вставки (заказываются отдельно). Для снижения распространения шума в воздуховоды следует применять шумоглушители (заказываются отдельно).

Условное обозначение:

Вентилятор NAVEKA VKS 4 3 — 200

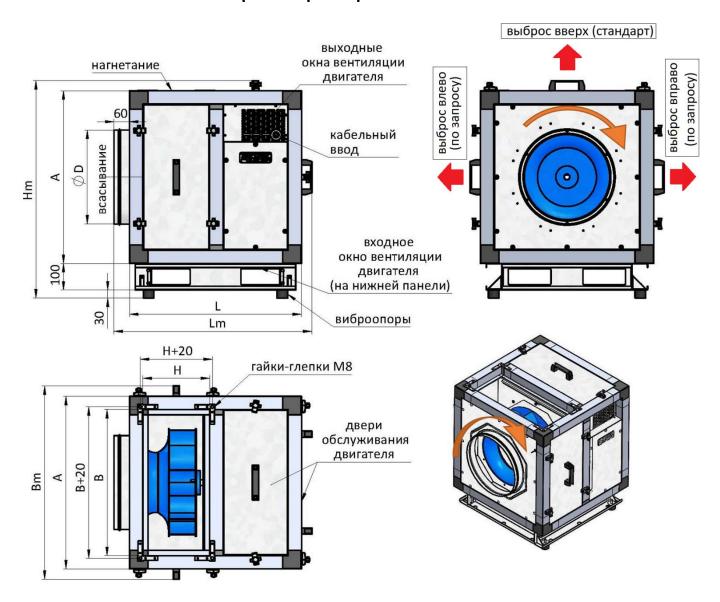

______ диаметр подключения на входе, мм количество фаз питающего напряжения количество полюсов электродвигателя вентилятор кухонного исполнения VK — без изоляции VKS — в шумоизолированном корпусе

Технические характеристики

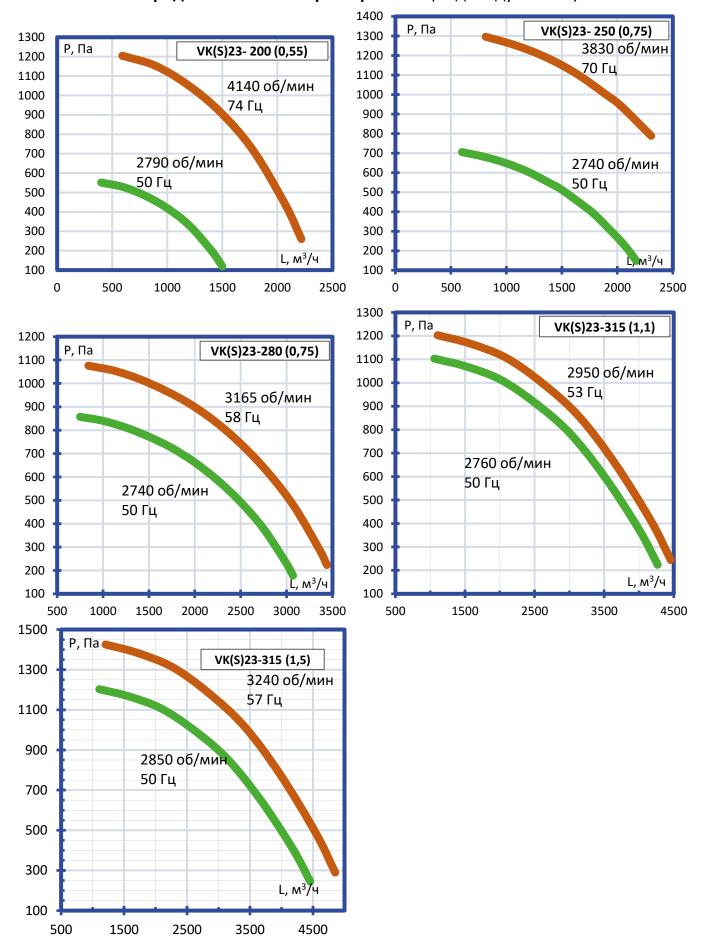

Модель	Nº	Тип	Двига-	Мощ-	Ток,	Ско-	Ско-	Ча-	Macca	Macca
		ко-	тель	ность,	Α	рость	рость	стота	VK, ĸr	VKS,
		леса		кВт		ном.,	макс.,	макс.,		КГ
						об/мин	об/мин	Гц		
VK(S)23-200 (0,55)	1	220	63B2	0,55	1,4	2790	4140	74	26	40
VK(S)23-250 (0,75)	2	250	71A2	0,75	1,9	2740	3830	70	31	50
VK(S)23-280 (0,75)	3	280	71A2	0,75	1,9	2740	3165	58	34	54
VK(S)23-315 (1,1)	4	310	71B2	1,1	2,7	2760	2950	53	45	68
VK(S)23-315 (1,5)	5	310	80A2	1,5	3,5	2850	3240	57	50	70
VK(S)23-355 (2,2)	6	350	80B2	2,2	4,9	2855	3030	53	53	80
VK(S)43-355 (1,1)	7	350	80A4	1,1	2,9	1390	2400	86	44	80
VK(S)43-355 (1,5)	8	350	80B4	1,5	3,7	1400	2550	91	52	81
VK(S)43-400 (1,1)	9	400	80A4	1,1	2,9	1390	1990	72	54	98
VK(S)43-400 (1,5)	10	400	80B4	1,5	3,7	1400	2205	79	65	100
VK(S)43-450 (1,1)	11	450	80A4	1,1	2,9	1390	1640	59	67	114
VK(S)43-450 (1,5)	12	450	80B4	1,5	3,7	1400	1820	65	79	116
VK(S)43-500 (2,2)	13	500	90L4	2,2	5	1400	1675	60	94	136
VK(S)43-500 (4)	14	500	100L4	4	9,3	1410	2040	72	107	152
VKS43-560 (3)	15	560	100S4	3	7	1410	1560	55	-	167
VKS43-560 (5,5)	16	560	112M4	5,5	11,7	1440	1920	67	-	203
VKS43-630 (5,5)	17	630	112M4	5,5	11,7	1440	1575	55	-	221
VKS43-630 (7,5)	18	630	13254	7,5	16	1460	1740	60	-	224
VKS43-630 (11)	19	630	132M4	11	22,5	1450	1980	68	-	227

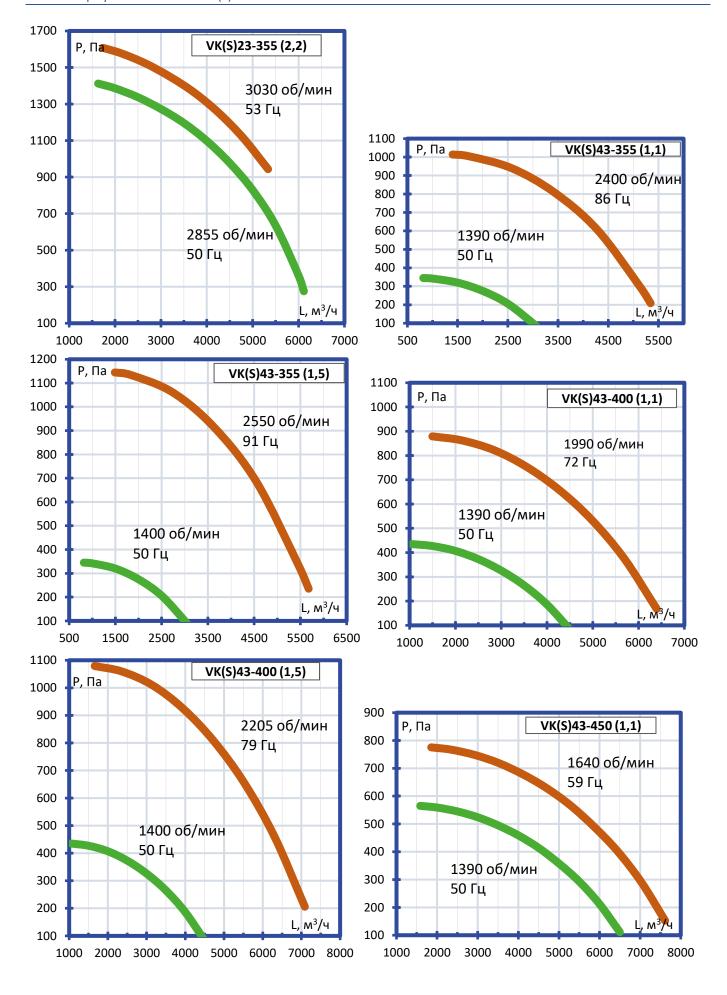
Аэродинамические характеристики

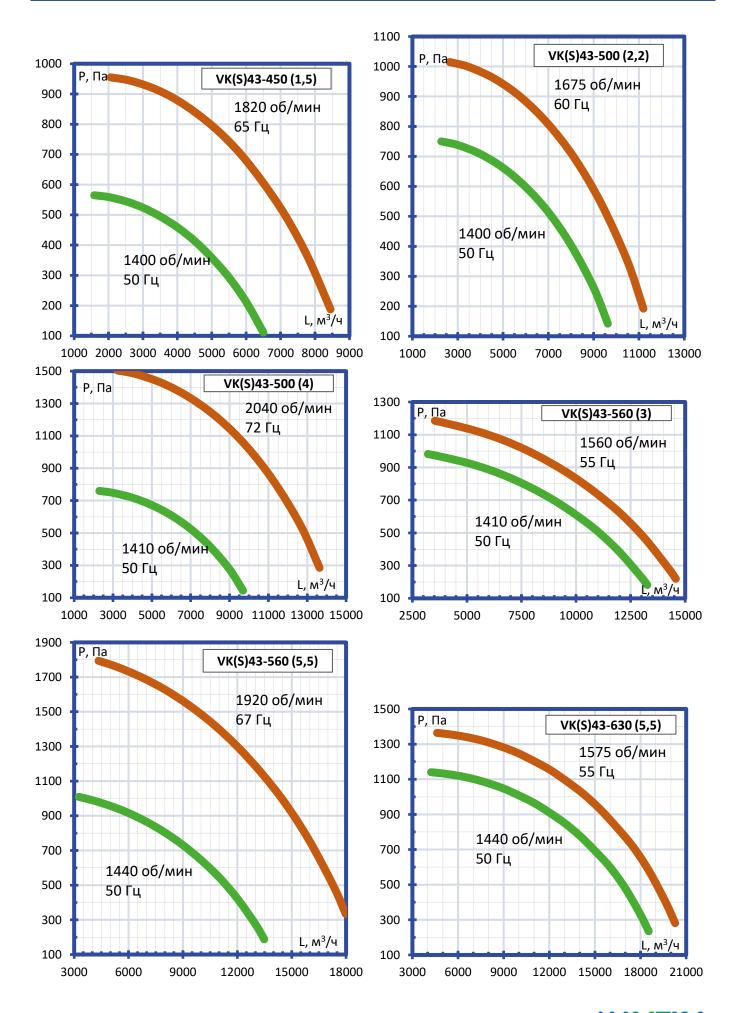
на максимальной частоте (с разгоном частотным преобразователем)

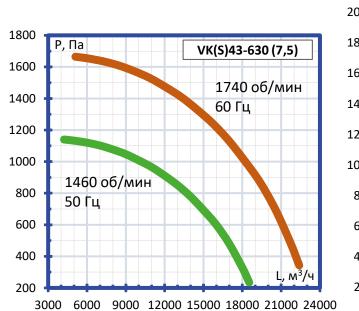


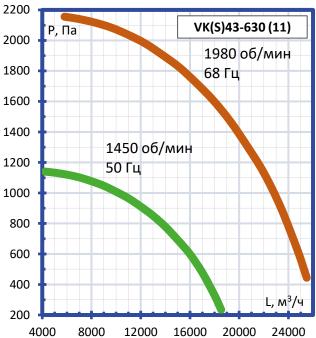
Габаритные размеры исполнения VK


Модель	D, MM	В, мм	H, MM	A, MM	L, mm	lmax,	Lm max,	Bm,	Hm,
						MM	MM	MM	MM
VK200	198	340	150	420	239	180	449	458	651
VK250	248	370	170	450	259	216	505	488	681
VK280	278	400	200	480	289	216	535	518	711
VK315	313	500	200	580	289	233	553	618	811
VK355	353	550	250	630	339	254	623	668	861
VK400	398	650	250	730	339	254	623	768	961
VK450	448	750	270	830	389	254	673	868	1061
VK500	498	850	300	930	439	314	783	968	1161


Габаритные размеры исполнения VKS



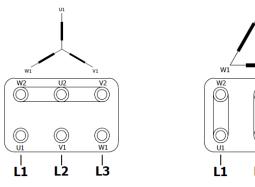

Модель	D, mm	В, мм	H, mm	A, mm	L, mm	Lm,	Bm,	Hm,
						MM	MM	MM
VKS200	198	340	150	440	480	579	518	608
VKS250	248	370	170	470	570	669	548	638
VKS280	278	400	200	500	570	669	578	668
VKS315	313	500	200	600	638	737	678	768
VKS355	353	550	250	650	645	744	728	818
VKS400	398	650	250	750	720	819	828	918
VKS450	448	750	270	850	720	819	928	1018
VKS500	498	850	300	950	758	857	1028	1118
VKS560	558	1000	330	1100	880	979	1178	1268
VKS630	628	1050	370	1150	918	1017	1228	1318


Аэродинамические характеристики (индивидуальные)

Электроподключение

ВНИМАНИЕ! Сеть электропитания должна быть оснащена стабилизатором напряжения, который не позволит подавать напряжение более чем на 10% отличающегося от номинального значения.

ВНИМАНИЕ! Электроподключения должен проводить только квалифицированный персонал, имеющий необходимый допуск к выполнению данных работ. Все элементы, требующие электроподключения, имеют электросхемы, в соответствии с которыми необходимо произвести подключение. Схемы продублированы на корпусах соответствующих элементов.


ВНИМАНИЕ! Электродвигатели оснащены термодатчиками — нормально замкнутый термоконтакт. Максимальный ток коммутации через термоконтакт — 2А. Двигатели мощностью 11 кВт и более оснащены термозащитой на основе РТС датчиков (позисторная защита). Контакты, выведенные в клеммную коробку вентилятора необходимо подключить к системе управления таким образом, чтобы размыкание данных контактов приводило к отключению питания, а возобновление питания было возможно только вручную — после проверки состояния двигателя.

На линии питания вентилятора необходимо установить устройство тепловой защиты, которое должно быть настроено на номинальный ток двигателя.

Ниже приведены рекомендуемые сечение вводного кабеля и номинал автоматического выключателя. Данные значения носят рекомендательный характер и должны подбираться в соответствии с ПУЭ - по типу применяемого кабаля и по условиям его прокладки.

Модель и типоразмер	Сечение вводного кабеля	Вводной автоматический выключатель
VK(S)23-200 (0,55)	5*1,5 mm² (L1, L2, L3, N, PE)	3P C6
VK(S)23-250 (0,75)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)23-280 (0,75)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)23-315 (1,1)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)23-355 (2,2)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)43-355 (1,1)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)43-355 (1,5)	5*1,5 mm² (L1, L2, L3, N, PE)	3P C6
VK(S)43-400 (1,1)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)43-400 (1,5)	5*1,5 mm² (L1, L2, L3, N, PE)	3P C6
VK(S)43-450 (1,1)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)43-450 (1,5)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)43-500 (2,2)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C6
VK(S)43-500 (4)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C10
VK(S)43-560 (3)	5*1,5 мм² (L1, L2, L3, N, PE)	3P C10
VK(S)43-560 (5,5)	5*2,5 mm² (L1, L2, L3, N, PE)	3P C16
VK(S)43-630 (5,5)	5*2,5 mm² (L1, L2, L3, N, PE)	3P C16
VK(S)43-630 (7,5)	5*2,5 mm² (L1, L2, L3, N, PE)	3P C20
VK(S)43-630 (11)	5*4 mm² (L1, L2, L3, N, PE)	3P C25

Электрические схемы подключения стандартных двигателей

Соединение обмоток в «звезду» (Y)

Соединение обмоток в «треугольник» (Δ)

Запуск, наладка, эксплуатация, техническое обслуживание и меры безопасности

внимание! Запуск должен производить специально обученный персонал. Перед запуском необходимо проверить правильность монтажа и электроподключений, убедится, что питающее напряжение соответствует номинальным параметрам. При первом запуске необходимо убедиться в правильности вращения вентилятора. Стрелка направления указана на корпусе вентилятора. Если вентилятор вращается неправильно, то необходимо изменить чередование фаз питающего напряжения. После запуска необходимо проверить рабочие токи электродвигателей и сравнить их с номинальными. Если рабочие токи превышают номинальные значения или наблюдается перегрев двигателя, дальнейшая эксплуатация запрещена. Завышение рабочих токов электродвигателей центробежных вентиляторов может быть связано с заниженным сопротивлением сети (как следствие — завышенные расходы). В данном случае необходимо снизить расход воздуха до расчетных параметров. При использовании регуляторов скорости, необходимо ограничивать минимальную скорость вращения на таком уровне, чтобы вентилятор работал без перегрева.

При выводе на рабочую точку не допускается чрезмерное снижение частоты вращения посредством частотного преобразователя. Не рекомендуется снижать частоту ниже 30 Гц, так как это может существенно снизить ресурс работы двигателя. При первом запуске и испытании вентилятора, а также после вывода его на рабочую точку, помимо контроля токов, необходимо осуществлять периодическую проверку температуры двигателя. Наладку необходимо проводить согласно пособию к СНиП 3.05.01-85 и другим нормативным документам. Необходимо регулярно проводить осмотры и техническое обслуживание оборудования. Вентиляторы должны эксплуатироваться во взрывобезопасных помещениях.

ВНИМАНИЕ! Для сохранения гарантийных обязательств, после запуска необходимо составить отчет с указанием рабочих параметров установки (напряжение, токи, расход воздуха), времени проведения пусконаладочных работ, ответственного лица (с подписью).

Хранение и транспортировка

Вентиляторы транспортируются в собранном виде. Вентиляторы консервации не подвергаются.

Срок гарантии: 2 года

Гарантийный талон с печатью и подписью поставляется комплектно с оборудованием.

г. Санкт-Петербург тел. (812) 309-74-06

E-mail: info@progress-nw.ru

