

Общество с ограниченной ответственностью «ОКГрупп» (ООО «ОКГрупп»)

УТВЕРЖДАЮ

Генеральный директор

НООО «ОКГрупп»

Поплавский Д.В.

ругинойне 2023 г.

ХИМИЧЕСКИЕ АНКЕРНЫЕ СИСТЕМЫ ОКГ

ТЕХНИЧЕСКИЙ ПАСПОРТ НА ПРОДУКЦИЮ ОКГ ТЕ500 СО СТАЛЬНЫМИ ЭЛЕМЕНТАМИ В ВИДЕ ШПИЛЕК М8-М36

Технический паспорт

Анкер: ОКГ ТЕ500

Тип анкера: химический (клеевой) анкер

Дополнительные сведения: химический анкер на эпоксидной основе для применения с шпильками классов прочности не ниже 4.6 (FOCT ISO 898-1), шпильками из нержавеющей стали A4-70 (ISO 3506).

Допускаемые при расчете условия установки: основание бетон B15 – B60: ударное бурение, алмазное сверление с созданием шероховатостей стенок отверстия, алмазное сверление в сухих, водонасыщенных и затопленных водой отверстиях в бетоне с трещинами и без трещин.

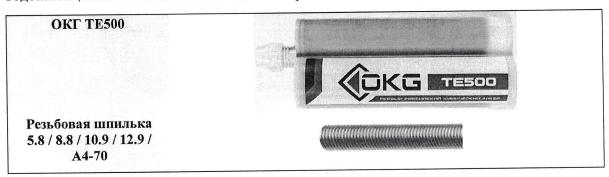


Таблица 1 – Предусмотренные температурные режимы для клеевых анкеров ТЕ500 со стальными элементами в виде шпилек

Температурный режим	Допустимый диапазон изменения температур, °С	Максимальная длительная температура эксплуатации, °С	Максимальная кратковременная температура при эксплуатации, °C
Температурный режим I	-43 +40	Не более 24	40
Температурный режим III	-43 +70	Не более 43	70

Таблица 2 – Конструктивные требования к размещению клеевых анкеров TE500 со стальными элементами в виде шпилек

элементами в виде шпиле	K											
TE500		Резьбовая шпилька 5.8 / 8.8 / 10.9 / 12.9 / A4-70										
1200	M8	M10	M12	M16	M20	M24	M27	M30	M33	M36		
Эффективная глубина анкеровки hef (мм)	80	90	110	125	170	210	240	270	310	340		
Диаметр отверстия для установки анкера d ₀ (мм)	10	12	14	18	22	28	30	35	37	40		
Минимальная толщина основания hmin (мм)	110	120	140	170	220	270	340	380	410	410		
	1.	Бетонн	ое основ	ание с тр	ещинамі	и и без тр	ещин					
1.1 Минимальное краевое расстояние с _{min} (мм)	40	45	45	50	55	60	75	80	165	180		
1.2 Минимальное межосевое расстояние smin (мм)	40	50	60	75	90	115	120	140	165	180		

Таблица 3 — Параметры для расчета прочности при растяжении клеевых анкеров TE500 со стальными элементами в виде шпилек

элементами в виде шпилек ТЕ500			Perkon	og mnu	пька 5 9	2/22/1	0 0 / 12 0) / A4-70				
1 2300	M8	M10	M12	M16	M20	M24	M27	M30	M33	M36		
				ушение п						11100		
1.1 Нормативное значение силы сопротивления анкера по стали $N_{n,s}$ (кH):												
TE500 - 5.8	18	29	42	79	123	177	230	281	343	404		
TE500 - 8.8	29	46	67	126	196	282	367	449	547	644		
TE500 – 10.9	37	58	85	157	246	354	460	562	685	807		
TE500 – 12.9	43	68	99	185	288	416	540	660	805	947		
TE500 - A4-70	26	41	59	110	172	247	322	393	-	_		
1.2 Коэффициент надежности									•			
γ_{N_s}						_						
5.8 8.8						.5						
10.9		1.5 1.4										
12.9			***************************************			.4		***************************************				
A4-70						87						
	2. P	азрушен	ие от вы	калыван	ия бетон	а основа	ния					
2.1 Коэффициент условий работы γ_{N_c} :												
Ударное бурение (сухие отверстия)		1,0				1,0			1,	,1		
Ударное бурение (водонасыщенные и												
затопленные водой		1,4							1,5			
отверстия)												
Алмазное сверление (сухие		1,2					1.4					
отверстия)		1,2					1,4					
Алмазное сверление (водонасыщенные и												
затопленные водой					1,	,4						
отверстия)												
Алмазное сверление с созданием шероховатостей						1,0			1.	,2		
стенок отверстия	3.	Daansii										
3.1 Критическое краевое	<u>3.</u>	Разруг	пение от	раскалы	вания ос	нования						
расстояние при раскалывании												
Ccr,sp (MM)												
$h/h_{ef} \ge 2.0$					h_{ϵ}							
$1.3 < h/h_{ef} < 2.0$					$4,6 h_{ef}$	- 1,8 h						
$h/h_{ef} \le 1.3$					2,26	h_{ef}						
3.2 Критическое межосевое расстояние при раскалывании					$2 c_c$	er,sp						
Scr,sp (мм) 3.3 Коэффициент условий					см. по	эз. 2.1						
работы $\gamma_{N_{sp}}$ 4. Комбин	ировани	e naanvi	пение по	контакт	A M Briro	пывании	бетоне	основани	a			
4.1 Номинальный диаметр		20.00										
анкера d _{nom} (мм)	8	10	12	16	20	24	27	30	33	36		
4.2 Нормативное сцепление клеевого анкера с бетоном B25					по та	ıбл. 4						
τ _n (Н/мм²) 4.3 Коэффициент,										***************************************		
учитывающий фактическую прочность бетона основания												
ψ _c * Бетон В15					0	06						
Бетон В20					0,							
Бетон В25						00						
Бетон В30					1,							
Бетон В35					1,							
Бетон В40						04						
Бетон В45					1,	06						

•	
Бетон В50	1,07
Бетон В55	1,08
Бетон В60	1,09
4.4 Коэффициент условий	
работы γ_{N_n}	см. поз. 2.1
*Для анкеров ОКГ ТЕ5	00 при выполнении отверстий алмазным сверлением с созданием шероховатостей стенок

^{*}Для анкеров ОКГ ТЕ500 при выполнении отверстий алмазным сверлением с созданием шероховатостей стенок отверстия значение коэффициента ψ_c принимается 1,0 независимо от класса бетона.

Таблица 4 — Нормативное сцепление τ_n клеевых анкеров TE500 со стальными элементами в виде шпилек

ТЕ500	Резьбовая шпилька 5.8 / 8.8 / 10.9 / 12.9 / A4-70										
	M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	
1.1 Нормативное сцепление											
клеевого анкера с бетоном В25											
без трещин при выполнении											
отверстий ударным бурением,											
алмазным сверлением с											
созданием шероховатостей											
стенок отверстия (сухие											
отверстия) $\tau_{n,urc}$ (H/мм ²)											
Температурный режим I (40/24°C)	19,0	18,0	18,0	17,0	16,0	15,0	15,0	14,0	14,0	13,0	
Температурный режим III (70/43°C)	15,0	14,0	14,0	13,0	13,0	12,0	12,0	11,0	11,0	11,0	
1.2 Нормативное сцепление											
клеевого анкера с бетоном В25											
без трещин при выполнении											
отверстий ударным бурением,											
алмазным сверлением с											
нанесением шероховатостей											
стенок отверстия											
(водонасыщенные и											
затопленные водой отверстия)											
$\tau_{n,urc}$ (H/MM2)									 		
Температурный режим I (40/24°C)	11,0	11,0	11,0	11,0	10,0	10,0	10,0	9,5	9,5	9,0	
Температурный режим III (70/43°C)	9,0	9,0	9,0	9,0	8,5	8,5	8,5	8,0	8,0	8,0	
1.3 Нормативное сцепление						1					
клеевого анкера с бетоном В25											
без трещин при выполнении											
отверстий алмазным											
сверлением (сухие отверстия)											
$\tau_{n,urc}$ (H/mm ²)											
Температурный режим I	13,0	13,0	13,0	13,0	12,0	12,0	12,0	12,0	11,0	11,0	
(40/24°C)	10,0	10,0	10,0	,-				 	-	-	
Температурный режим III (70/43°C)	10,0	10,0	10,0	10,0	9,0	9,0	9,0	8,5	8,5	8,5	
1.4 Нормативное сцепление											
клеевого анкера с бетоном В25											
без трещин при выполнении											
отверстий алмазным											
сверлением (водонасыщенные											
и затопленные водой											
отверстия) $\tau_{n,urc}$ (H/мм2)		-	_			+					
Температурный режим I (40/24°C)	8,0	8,0	8,0	8,0	7,5	7,5	7,5	7,0	7,0	7,0	
Температурный режим III (70/43°C)	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0	5,0	
1.5 Нормативное сцепление											
клеевого анкера с бетоном В25											
с трещинами при выполнении											
отверстий ударным бурением,									1		
алмазным сверлением с											
созданием шероховатостей											
стенок отверстия (сухие	1		1								
отверстия) $\tau_{n,rc}$ (H/мм ²)									1		

Температурный режим I (40/24°C)	7,5	9,0	11,0	11,0	11,0	9,5	9,0	8,5	8,0	8,0
Температурный режим III (70/43°C)	6,5	7,5	8,0	8,0	8,0	8,0	8,0	8,0	6,0	6,0
1.6 Нормативное сцепление клеевого анкера с бетоном B25 с трещинами при выполнении отверстий алмазным сверлением (сухие отверстия) $\tau_{n,urc}$ (H/мм²)										
Температурный режим I (40/24°C)	7,0	8,0	10,0	10,0	10,0	9,0	8,5	8,0	7,5	7,5
Температурный режим III (70/43°C)	6,0	7,0	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,5
1.7 Нормативное сцепление клеевого анкера с бетоном B25 с трещинами при выполнении отверстий ударным бурением, алмазным сверлением с созданием шероховатостей стенок отверстия (водонасыщенные и затопленные водой отверстия) $\tau_{n,rc}$ (Н/мм²)										
Температурный режим I (40/24°C)	6,0	7,0	8,0	8,0	8,0	7,0	7,0	6,5	6,5	6,0
1.8 Нормативное сцепление клеевого анкера с бетоном B25 с трещинами при выполнении отверстий алмазным сверлением (водонасыщенные и затопленные водой отверстия) $\tau_{n,rc}$ (Н/мм²)										
Температурный режим I (40/24°C)	4,5	5,5	6,0	6,0	6,0	6,0	6,0	5,0	5,0	5,0

Таблица 5 – Параметры для расчета прочности при сдвиге для клеевых анкеров TE500 со стальными элементами в виде шпилек

ТЕ500	Резьбовая шпилька 5.8 / 8.8 / 10.9 / 12.9 / A4-70										
1200	M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	
			1. Pa3	рушение	по стали						
1.1 Нормативное значение силы сопротивления анкера по стали $V_{n,s}$ (кН):		15	21	20	<i>(</i> 1	0.0	115	140	172	204	
TE500 – 5.8	9	15	21	39	61	88	115	140	173		
TE500 – 8.8	15	23	34	63	98	141	184	224	277	326	
TE500 – 10.9	18	29	42	78	122	176	229	280	347	408	
TE500 – 12.9	22	35	50	94	147	212	275	336	416	489	
TE500 – A4-70	13	20	30	55	86	124	161	197	-	-	
1.2 Нормативное значение предельного момента для анкера по стали $M_{n,s}^0$ (Нм):											
TE500 - 5.8	24,12	47,12	81,43	193,02	376,99	651,44	927,54	1272,3	1693,5	2198,6	
TE500 - 8.8	38,61	75,39	130,29	308,83	603,18	1042,3	1484,1	2035,7	-	•	
TE500 - 10.9	42,22	82,46	142,51	337,78	659,73	1140,0	1623,2	2226,6	-	-	
TE500 – 12.9	50,66	98,95	171,01	405,34	791,67	1368,0	1947,8	2671,9	-	-	
TE500 – A4-70	36,15	70,61	122,02	289,22	564,87	976,12	910,97	1249,6	-	-	
$1.3~$ Коэффициент условий групповой работы анкеров λ_s						1,0					
1.4 Коэффициент надежности γ_{V_s} 5.8						1,25					
8.8						1,25					
10.9						1,5					
12.9						1,5			. 20		
A4-70	<u> </u>			,56			20 0111000		2,38		
2.1 Коэффициент учета κ глубины анкеровки κ	2. Разр	ушение о	т выкал	ывания			за анкер	UM			
$h_{ef} < 60$ мм						1,0					
$h_{ef} \geq 60$ мм						2,0					
2.2 Коэффициент надежности						1,0					
$\gamma_{v_{\rm cp}}$	3.	Danny	шение от	OTKO IL I	ound the	ad UCHUB	ания				
3.1 Приведенная глубина	3.	т азруг	шение от			не более					
анкеровки при сдвиге l _f (мм) 3.2 Номинальный диаметр	8	10	12	16	20	24	27	30	33	36	
анкера d _{nom} (мм) 3.3 Коэффициент условий						1,0		1			
работы γ_{V_c}	L										

Таблица 6 – Параметры для расчета деформативности при растяжении для клеевых анкеров ТЕ500 со

стальными элементами в виде шпилек

стальными элементами в в ТЕ500	Резьбовая шпилька 5.8 / 8.8 / 10.9 / 12.9 / A4-70									
	M8	M10	M12	M16	M20	M24	M27	M30	M33	M36
1.	Смещение	анкеров	от растя	гивающ	их усили	й в бетон	е без тре	щин		
1.1 Коэффициент податливости анкера $c_{N,0}$ (мм/МПа)										
Температурный режим I (40/24°C)	0,04	0,05	0,05	0,05	0,05	0,06	0,07	0,07	0,07	0,08
Температурный режим III (70/43°C)	0,05	0,05	0,05	0,06	0,06	0,07	0,08	0,09	0,09	0,09
1.2 Коэффициент податливости анкера $c_{N,\propto}$ (мм/МПа)										
Температурный режим I (40/24°C)	0,09	0,10	0,11	0,12	0,14	0,15	0,16	0,17	0,18	0,19
Температурный режим III (70/43°C)	0,11	0,12	0,13	0,14	0,16	0,18	0,19	0,21	0,22	0,23
2. (Смещение	анкеров	от растя	гивающи	іх усилиі	і в бетон	е с трещі	инами		
 Коэффициент податливости анкера с_{N,0} (мм/МПа) 										
Температурный режим I (40/24°C)	0,02	0,03	0,05	0,07	0,09	0,12	0,14	0,16	0,18	0,19
Температурный режим III (70/43°C)	0,02	0,04	0,05	0,08	0,11	0,14	0,16	0,19	0,21	0,23
2.2 Коэффициент податливости анкера $c_{N,\alpha}$ (мм/МПа)										
Температурный режим I (40/24°C)	0,11	0,17	0,13	0,17	0,14	0,14	0,14	0,16	0,14	0,15
Температурный режим III (70/43°C)	0,14	0,21	0,15	0,21	0,17	0,17	0,16	0,19	0,16	0,21

Таблица 7 – Параметры для расчета деформативности при сдвиге для клеевых анкеров TE500 со стальными элементами в виде шпилек

стальными элементами в в	иде шии									
TE500	Резьбовая шпилька 5.8 / 8.8 / 10.9 / 12.9 / A4-70									
12000	M8	M10	M12	M16	M20	M24	M27	M30	M33	M36
1. Смещение анкеров от сдвигающих усилий в бетоне с трещинами и без трещин										
1.1 Коэффициент жесткости анкера при сдвиге $C_{V,0}$ (кН/мм)	16,7	16,7	20,0	25,0	25,0	33,3	33,3	33,3	34,0	36,2
1.2 Коэффициент податливости анкера $C_{V,\alpha}$	11,1	12,5	12,5	16,7	16,7	20,0	20,0	20,0	22,1	25,0

Настоящий Технический паспорт содержит необходимую информацию для проектирования и применения химических анкеров в соответствии с СП 513.1325800.2022. Данные получены по результатам испытаний и подтверждены «Протоколом лабораторных испытаний химических анкеров ОКГ ТЕ500 со стальными элементами в виде шпилек» №2902Б от 28.06.2023 г.

Разработано:

Болотова Г.Д.

Инженер-проектировщик ООО «ОКГРУПП»

Согласовано:

Макаров С.П.

Ведущий инженер ООО «ОКГРУПП»