

EAЭC N RU Д-RU.PA01.B.52175/21

ТУ 4862-001-85523656-2015 Код ТН ВЭД ЕАЭС: 8415830000 ТР ТС 010/2011 ТР ТС 004/2011 ТР ТС 020/2011

ПАСПОРТ ТЕХНИЧЕСКИЙ Руководство по монтажу и эксплуатации ВЕНТИЛЯТОР КАНАЛЬНЫЙ КРУГЛЫЙ ШУМОИЗОЛИРОВАННЫЙ NAVEKA VS(EC...)

Назначение и область применения

Вентилятор представляет собой механическое устройство, предназначенное для перемещения чистого и сухого воздуха по воздуховодам систем кондиционирования и вентиляции и создающее необходимый для этого перепад давлений (на выходе и входе вентилятора).

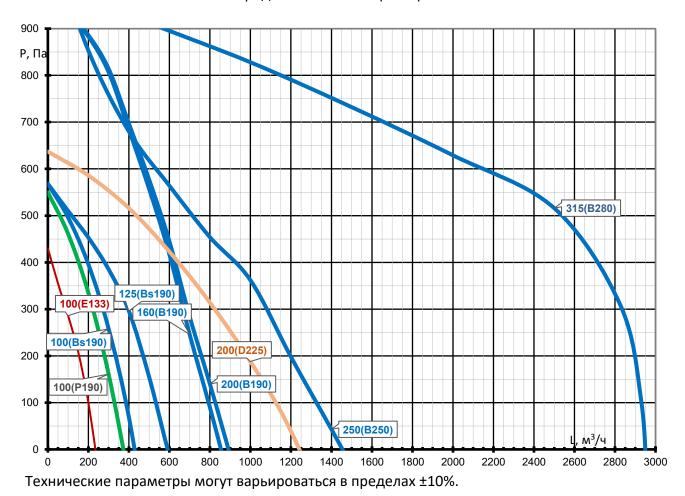
Вентиляторы можно устанавливать в любом положении, преимущественно в горизонтальном.

Рабочее колесо вентиляторов имеет электронно-коммутируемый высокоэффективный двигатель и назад загнутые лопатки.

Вентиляторы VS имеют шумоизолированный корпус.

Корпус изготавливается из оцинкованной стали. Соединение деталей корпуса производится либо с помощью точечной сварки, либо с помощью саморезов или заклепок.

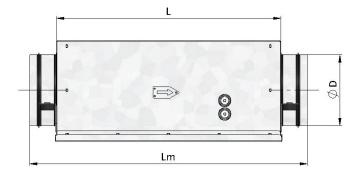
Условное обозначение:

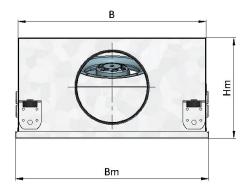

Основные технические параметры

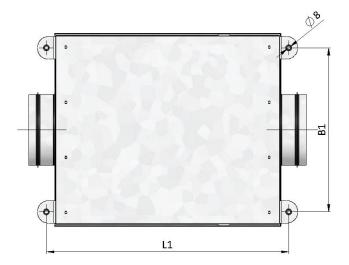
Модель	n, об/мин	Мощ- ность, кВт	Ток, А	Шум Lp, дБ(A)	t _{min} , ^o C	t _{max} , ^o C
(EC1)-100(Bs190)	3300	0,09	0,7	38,2	-30	+40
(EC1)-100(E133)	3770	0,03	0,3	38,2	-30	+40
(EC1)-100(P190)	2940	0,05	0,4	38,2	-30	+40
(EC1)-125(Bs190)	3300	0,09	0,7	38,2	-30	+40
(EC1)-160(B190)	4100	0,18	1,2	39,8	-30	+40
(EC1)-200(B190)	4100	0,18	1,2	39,8	-30	+40
(EC1)-200(D225)	3000	0,14	1,1	39,0	-30	+40
(EC1)-250(B250)	2700	0,23	1,7	43,0	-30	+40
(EC1)-315(B280)	2740	0,59	4,3	42,5	-30	+40

Lp, дБ(A) - Уровень звукового давления в окружение на расстоянии 3 метров.

Параметры приведены для максимальной скорости вращения. Регулирование доступно в диапазоне напряжений 1,5 - 10 В.


Аэродинамические характеристики




Navěka

Стр.2

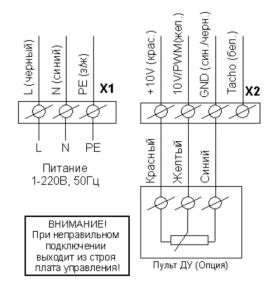
Габаритные размеры

Модель	Размеры, мм								
	d	L	L1	В	B1	Lm	Bm	Hm	Вес, кг
VS100	98	460	502	350	297	580	362	185	10,8
VS125	123	460	502	390	337	580	402	185	11,5
VS160	158	500	542	420	367	620	432	225	12,7
VS200	198	500	542	450	397	620	462	255	13,6
VS250	248	550	592	500	447	670	512	305	15
VS315	313	600	642	550	497	720	562	355	17,1

Электроподключения

<u>ВНИМАНИЕ! Сеть электропитания должна быть оснащена стабилизатором напряжения, который не позволит подавать напряжение более чем на 10% отличающегося от номинального значения.</u>

Электроподключения должен проводить только <u>квалифицированный</u> персонал, имеющий необходимый допуск к выполнению данных работ. Все элементы, требующие электроподключения, имеют электросхемы, в соответствии с которыми необходимо произвести подключение. Схемы продублированы на корпусах соответствующих элементов.


Вентиляторы должны управляться от внешнего сигнала.

Варианты управления:

- **вкл-выкл**: подача +10V, выходящих из двигателя, на клемму входа 0-10V. Это самый простой способ запустить вентилятор может быть реализован простым замыкающим контактом (безпотенциальным). В данном случае следует помнить, что вентилятор будет включаться на максимальную мощность;
 - плавное управление сигналом **0-10В** от внешнего контроллера: на вход 0-10V;
- управление внешним потенциометром 10 кОм такой вариант возможен посредством опции, приобретаемой отдельно Пульт ДУ для ЕС-вентилятора поворотный (10 кОм).

Ниже приведены примеры схем подключения к данному пульту управления.

Электрическая схема подключения вентиляторов

Кабель питания: **3х1,5 мм² (L,N,PE)**

Номинал автоматического выключателя: **1P C6** Кабель управления: **3x0,5 мм²** (экранированный)

На схеме отображен вариант управления пультом ДУ с поворотным потенциометром (поставляется опционально)

Данные значения носят рекомендательный характер и должны подбираться в соответствии с ПУЭ - по типу применяемого кабаля и по условиям его прокладки.

Запуск, наладка, эксплуатация, техническое обслуживание и меры безопасности

Запуск должен производить специально обученный персонал. Перед запуском необходимо проверить правильность монтажа и электроподключений, убедится, что питающее напряжение соответствует номинальным параметрам. После запуска необходимо проверить рабочие токи электродвигателей и сравнить их с номинальными. Если рабочие токи превышают номинальные значения или наблюдается перегрев двигателя, дальнейшая эксплуатация запрещена. Завышение рабочих токов электродвигателей центробежных вентиляторов может быть связано с заниженным сопротивлением сети (как следствие — завышенные расходы). В данном случае необходимо снизить расход воздуха до расчетных параметров.

Наладку необходимо проводить согласно пособию к СНиП 3.05.01-85 и другим нормативным до-кументам.

Рекомендуется размещать вентиляторы в отдельных технических помещениях, применять шумоизолирующие ограждения, экраны, кожухи и т.п. Для снижения передачи шума по сети воздуховодов рекомендуется применять шумоглушители и гибкие вставки. Монтаж осуществлять через виброгасящие материалы.

Необходимо регулярно проводить осмотры и техническое обслуживание оборудования.

Ресурс работы (Показатель надежности): 40 000 часов.

Вентиляторы должны эксплуатироваться во взрывобезопасных помещениях.

<u>ВНИМАНИЕ! Для сохранения гарантийных обязательств, после запуска необходимо составить отчет с указанием рабочих параметров установки (напряжение, токи, расход воздуха).</u>

Хранение и транспортировка

Вентиляторы транспортируются в собранном виде. Запрещается поднимать вентилятор за клеммную коробку. Вентиляторы консервации не подвергаются.

Срок гарантии: 2 года

Гарантийный талон с печатью и подписью поставляется комплектно с оборудованием.

г. Санкт-Петербург тел. (812) 309-74-06

E-mail: info@progress-nw.ru

