

Государственный реестр № 71374-18

Теплосчетчик компактный механический SANEXT Mono CM-1

Технический паспорт

с руководством по эксплуатации
SMC0000001

Ред. 00001 от 13 сентября 2023

ОГЛАВЛЕНИЕ

OF.	ЛАВЛЕНИЕ	2
1.	ИЗГОТОВИТЕЛЬ	4
2.	НАЗНАЧЕНИЕ	4
3.	ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ	6
4.	МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	7
5.	ОПИСАНИЕ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ	11
	5.1. Схема меню теплосчетчика	11
	5.2. Архивные значения (Меню А3)	13
	5.3. Ошибки и предупреждения	13
6.	ТАБЛИЦА ЭЛЕКТРИЧЕСКИХ ПОДКЛЮЧЕНИЙ	15
7.	ЗНАК УТВЕРЖДЕНИЯ ТИПА	
8.	КОМПЛЕКТНОСТЬ СРЕДСТВА ИЗМЕРЕНИЙ	16
9.	НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ,	
	УСТАНАВЛИВАЮЩИЕ ТРЕБОВАНИЯ К ТЕПЛОСЧЕТЧИКАМ КОМПАКТНЫМ «SANEXT»	4.0
	УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	
11.	подготовка к использованию. Размещение. монтаж	
	11.1. Подготовка изделия к установке на месте эксплуатации	18
	11.2. Размещение	18
	11.3. Монтаж	19
12.	ПОВЕРКА	23
13.	ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	24
14.	. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	24
15.	ДАННЫЕ О ПЕРИОДИЧЕСКОЙ ПОВЕРКЕ	25
16	СВИЛЕТЕЛЬСТВО О ПЕВВИЦНОЙ ПОВЕВИЕ	26

Настоящий паспорт предназначен для ознакомления с принципом работы компактного механического теплосчетчика SANEXT Mono CM-1 (далее по тексту «теплосчетчик»), с его конструкцией, для изучения правил транспортирования, хранения, монтажа и эксплуатации. Паспорт содержит также сведения об основных технических характеристиках, информацию о поверке и гарантиях изготовителя.

Производитель оставляет за собой право усовершенствовать конструкцию счетчика и его комплектующих, а также вносить соответствующие изменения и корректировки в настоящий паспорт без предварительного уведомления.

При заполнении паспорта не допускаются записи карандашом, смывающимися чернилами, а также подчистки. Неправильная запись должна быть аккуратно зачеркнута и рядом записана новая, которую заверяет ответственное лицо. После подписи проставляют фамилию и инициалы ответственного лица. Вместо подписи допускается проставлять личный штамп исполнителя.

> Паспорт необходимо хранить вместе со счетчиком в течение всего срока эксплуатации!

1. ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью «САНЕКСТ.ПРО» (ООО «САНЕКСТ.ПРО»)

ИНН 7813260600

Адрес: 197022, г. Санкт-Петербург, ул. Академика Павлова, д. 5, лит. В, помещение 46-Н

2. НАЗНАЧЕНИЕ

Теплосчетчики компактные механические SANEXT Mono CM-1 (далее – теплосчетчики) предназначены для измерений количества тепловой энергии, тепловой мощности, объемного расхода (объема), температуры, разницы температур в системах теплоснабжения.

Принцип работы теплосчетчика состоит в измерении объема и температуры теплоносителя в подающем и обратном трубопроводах и последующем определении тепловой энергии, путем обработки результатов измерений вычислителем и отображения на индикаторном устройстве вычислителя (далее – индикаторное устройство) результатов измерений:

- количества тепловой энергии, Гкал, кВт/ч;
- тепловой мощности, Гкал/ч;
- объемного расхода теплоносителя в подающем и обратном трубопроводах, м3/ч;
- объема теплоносителя в подающем и обратном трубопроводах, м3;
- температуры теплоносителя в подающем и обратном трубопроводах, °C;
- разности температур теплоносителя в подающем и обратном трубопроводах. °C:
- текущего времени, ч.

SANEXT Mono CM-1 – механические теплосчетчики, имеющие съемный вычислитель. Конструктивно теплосчетчики представляют собой единый теплосчетчик и состоят из:

- преобразователя расхода;
- пары датчиков температуры;
- вычислителя.

Объем месячных архивов теплосчетчика составляет 36 месяцев. В энергонезависимой памяти теплосчетчика хранятся результаты измерений, диагностическая информация и накапливаются данные о времени штатной работы теплосчетчика, ч.

Теплосчетчики обеспечивают дистанционную передачу информации через интерфейсы типа: им- пульсный выход (открытый коллектор), M-Bus, оптический интерфейс и RS-485, а также могут иметь возможность подключения счетчиков воды с импульсным выходом. Преобразователь расхода устанав- ливается в прямом или в обратном трубопроводе. Место установки преобразователя расхода оговари- вается при заказе.

Теплосчетчик соответствует требованиям ТР ТС 020/2011. Декларация о соответствии: EAЭC N-RU Д-RU.PA02.B.10310/23 от 01.03.2023.

3. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Теплосчетчики имеют встроенное программное обеспечение (ПО), которое устанавливается (прошивается) в памяти вычислителя при изготовлении, в зависимости от модификации теплосчетчиков. В процессе эксплуатации ПО не может быть изменено, т.к. пользователь не имеет к нему доступа.

ПО предназначено для сбора, преобразования, обработки, отображения на индикаторном устройстве вычислителя и передачи во внешние измерительные системы результатов измерений и диагностической информации.

Нормирование метрологических характеристик теплосчетчиков проведено с учетом влияния ПО. Уровень защиты ПО и измерительной информации от преднамеренных и непреднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

4. МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование параметра	Знач	ение парам	етра
Диаметр условного прохода (Ду), мм	15		20
Минимальный объемный расход, Qmin, м3/ч	0,012	0,03	0,050
Максимальный объемный расход, Qn, м3/ч	0,6	1,5	2,5
Предельный объемный расход*, Qmax, м3/ч	1,2	3,0	5,0
Диапазон измерений температуры тепло- носителя, °C	от 1 до 105		
Диапазон измерений разности температур теплоносителя, °C	от 3 до 95		
Пределы допускаемой относительной погрешности измерения разности температур теплоносителя, %	± (0,5+0,003Δtmin/Δt)		
Пределы допускаемой абсолютной погрешности измерений температуры теплоносителя, °C	± (0,6+0,004·t))
Пределы допускаемой относительной погрешности измерений количества тепловой энергии, %	± (3+4·Δtmin/Δt+0,02·Qmax /Q)		
Пределы допускаемой относительно погрешности измерений текущего времени, %			
Максимальное рабочее избыточное давление теплоносителя, МПа 1,6			
Потеря давления при Qmax, МПа, не более	0,025		
Совместимый тип элемента питания	стимый тип элемента питания ER18505		
Напряжение встроенного элемента питания, В	3,6±0,1		

Наименование параметра	Значение параметра
Срок службы элемента питания, лет, не менее	6
Степень защиты по ГОСТ 14254-2015	IP54
Средний срок службы, лет, не менее	12
Класс точности	2
Напряжение питания интерфейса, В	924
Ток потребления от внешнего источника, мА не более	10
Количество импульсных входов (исполнение по заказу)	4
Количество импульсных выходов (исполнение по заказу)	1
Вес импульса, Гкал (по заказу возможны другие значения)	0,001

Таблица 1. Метрологические и технические характеристики.

Примечание. Обозначения в таблице: Q — измеренное значение объемного расхода теплоносителя, м3/ч; Δt — измеренное значение разности температур прямого и обратного потоков теплоносителя, 9 С; t — измеренное значение температуры прямого или обратного потоков теплоносителя, 9 С.

^{*} Значение объемного расхода, при котором теплосчетчик функционирует в течение коротких промежутков времени (не более 1 ч в день и не более 200 ч в год).

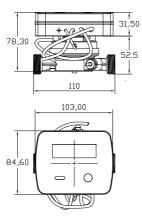

Наименование характеристики	Значение	параметра
Диаметр условного прохода (Ду), мм	15	20
Рабочие условия эксплуатации: - диапазон температуры окружающего воздуха, °С, при: а) эксплуатации б) хранениия - диапазон относительной влажности воздуха, % - диапазон атмосферного давления, кПа	бочие условия эксплуатации: иапазон температуры окружающего здуха, "С, при: эксплуатации от +5 до +50 хранениия от -40 до +55 иапазон относительной влажности от 20 до 95 здуха, %	
Присоединительная резьба, дюйм	G 3/4	G1
Средняя наработка на отказ, ч, не менее	104	000

Таблица 2. Основные эксплуатационные характеристики.

Габаритные размеры, мм:

Ду15

5. ОПИСАНИЕ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ

Для того, чтобы прочитать информацию на дисплее теплосчетчика, необходимо нажать на кнопку на лицевой панели. Для сохранения энергии аккумуляторной батареи, дисплей переходит в спящий режим после 3-х минут бездействия.

Рис. 1. Внешний вид дисплея теплосчетчика Sanext Mono CM-1.

5.1. Схема меню теплосчетчика

Таблица 3. Схема меню верхнего уровня.

Меню Δ1

- 1 1 Количество потребленной тепловой энергии, Гкал
- 1 2 Количество потребленной энергии охлаждения, Гкал
- 1.3 Текущая температура в подающем трубопроводе
- 1.4 Текущая температура в обратном трубопроводе
- 1.5 Разность температур
- 1.6 Мгновенный расход, м3/ч
- 1.7 Общий объем носителя, м3
- 1.8 Мгновенный расход. кВт/ч
- 1.9 Версия ПО (U00) и
- код ошибки (ЕОО)

Меню Д2

- 2.1 Текущее время
- 2.2 Текущая дата
- 2.3 Адрес теплосчетчика (EN1434)
- 2.4 ID теплосчетчика
- 2.5 Модель теплосчетчика
- 2.6 Монтаж (IN подающий трубопровод. OUT - обратный трубопровод)*
- 2.7 Размер Ду 2.8 Версия ПО (U00) и код ошибки (ЕОО)
- 2.9 Время работы с функционирования теплосчетчика. ч.

Меню ДЗ

- 3.1 Дата архива ГГ.ММ.ДД.
- 3.1.1 Общий объем носителя, м3 за месяц
- 3.1.2 Количество потребленной тепловой энергии. Гкал за месяц
- 3 1 3 Количество потребленной энергии охлаждения, Гкал за месяц

Таблица 4. Подробная схема меню теплосчетчика.

* Для изменения монтажного положения теплосчетчика, следует воспользоваться специальной инструкцией (отправляется сервисной службой ООО «САНЕКСТ.ПРО» по запросу).

5.2. Архивные значения (Меню АЗ)

Для просмотра архивных значений показаний теплосчетчика перейдите в меню А3. С помощью короткого нажатия выберите нужный архивный период и используйте длинное нажатия для просмотра показаний выбранного периода:

- Общий объем носителя, м3 за месяц
- Количество потребленной тепловой энергии, Гкал за месяц
- Количество потребленной энергии охлаждения, Гкал за месяц

5.3. Ошибки и предупреждения

Теплосчетчик постоянно выполняет самодиагностику и в случае неисправности может отображать различные неисправности (Меню A1.9 или A2.8).

Код	Значение	Как исправить ошибку
E01	Низкий заряд батареи	Обратитесь в сервисный центр
E08	Нет воды в трубопроводе	Проверьте температурный датчик на наличие обрыва цепи или короткого замыкания
E09	Низкий заряд батареи + Нет воды в тру- бопроводе	Обратитесь в сервисный центр
E40	Температура ниже 3°C	Проверьте температуру теплоносителя
E41	Низкий заряд батареи + Температура ниже 3°C	Обратитесь в сервисный центр
E48	Нет воды в трубопроводе + Температура ниже 3°C	Проверьте температуру теплоносителя
E49	Низкий заряд батареи + Нет воды в тру- бопроводе + Температура ниже 3°C	Обратитесь в сервисный центр

Таблица 5. Коды ошибок теплосчетчика.

Визуальная индикация на ЖК-дисплее в случае ошибки:

Низкий заряд батареи	Î	Появляется на ЖК-экране, если Напряжение аккумулятора падает до 2,7 V. Если напряжение батареи увеличивается до 2,7 V, значок исчезает. Аккумуля-торная батарея проверяет свою работоспособность каждые 30 секунд.
Знак неисправности	Δ	Появляется на ЖК-экране в следующих случаях: 1 - Температура ниже 3°C 2 - Температура выше 95°C 3 - Короткое замыкание температурного датчика 4 - Обрыв цепи температурного датчика 5 - Ошибки памяти 6 - Пустой трубопровод

Таблица 6. Визуальная индикация ошибок.

6. ТАБЛИЦА ЭЛЕКТРИЧЕСКИХ ПОДКЛЮЧЕНИЙ

1) Исполнение с интерфейсом RS485*:

Черный — минус питания Красный — плюс питания Желтый — RS485 A Зеленый — RS485 B

2) Исполнение с интерфейсом M-Bus*:

 Синий
 — M-Bus

 Красный
 — M-Bus

3) Исполнение с импульсным выходом:

Красный — плюс Черный — минус

* Информация о подключении теплосчетчиков с дополнительными импульсными входами:

Зеленый — плюс 1 Белый — плюс 2 Коричневый — плюс 3 Черный — минус Желтый — минус

7. ЗНАК УТВЕРЖДЕНИЯ ТИПА

Наносится на теплосчетчик любым технологическим способом, обеспечивающим четкое изображение этого знака, его стойкость к внешним воздействующим факторам, а также сохраняемость, и на титульном листе паспорта и руководства по эксплуатации типографским способом.

8. КОМПЛЕКТНОСТЬ СРЕДСТВА ИЗМЕРЕНИЙ

Наименование	Обозначение	Количество
Теплосчетчик компактный «SANEXT» Mono RM	«SANEXT Mono CM-1»*	1 шт.
Руководство по эксплуатации	-	1 шт.
Комплект монтажных частей и принадлежностей*	-	Согласно заказу

Таблица 7. Комплектность теплосчетчика.

9. НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ТРЕБОВАНИЯ К ТЕПЛОСЧЕТЧИКАМ КОМПАКТНЫМ «SANEXT»

- Приказ Росстандарта от 07.02.2018 г. № 256 Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходом жидкости.
- ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры.
- ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования.
- ГОСТ Р 51649-2014 Теплосчетчики для водяных систем теплоснабжения.
 Общие технические условия.
- ТУ 4218-001-13174411-2016 Теплосчетчики компактные «SANEXT». Технические условия с изменением № 1.

Модификация теплосчетчика и наличие комплекта монтажных частей и принадлежностей определяется догово-ром на поставку.

10. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

По степени защиты от поражения электрическим током теплосчетчик относится к классу III по ГОСТ 12.2.007.0.

ПРЕДУПРЕЖДЕНИЕ

- При ненадлежащем обращении с литиевой батареей возникает опасность взрыва.
- Батареи запрещается: заряжать; вскрывать; замыкать накоротко на время более 1 сек.; перепутывать полюса; нагревать свыше 100 °C; подвергать воздействию прямых солнечных лучей.
- На батареях не должна конденсироваться влага.
- При необходимости транспортировки следует соблюдать предписания по обращению с опасными грузами для соответствующего вида транспорта (обязательная маркировка).
- Использованные литиевые батареи относятся к специальному виду отходов.

11. ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ. РАЗМЕЩЕНИЕ. МОНТАЖ

11.1. Подготовка изделия к установке на месте эксплуатации

Перед установкой теплосчетчика проверьте его комплектность в соответствии с паспортом. Выполните внешний осмотр с целью выявления механических повреждений корпуса прибора. Если прибор находился в условиях, отличных от условий эксплуатации, то перед вводом в эксплуатацию необходимо выдержать его в указанных условиях не менее 2 ч.

11.2. Размещение

При выборе места для установки следует руководствоваться следующими критериями: не следует устанавливать теплосчетчик в местах, где возможно присутствие пыли или агрессивных газов, располагать вблизи мощных источников электромагнитных и тепловых излучений или в местах, подверженных тряске, вибрации или воздействию воды.

При монтаже необходимо учитывать, что теплосчетчик может быть сконфигурирован для работы в прямом или обратном трубопроводе (тип счетчика отображается в меню A2, см. Табл. 4). Возможно переконфигурирование прибора (IN/OUT) до начала эксплуатации с подающего на обратный или наоборот. При этом необходима переустановка датчиков температуры.

Перед установкой расходомера трубопровод необходимо промыть, чтобы удалить из него ока- лину, песок и другие твердые частицы.

Монтаж теплосчетчика в трубопровод осуществляется с помощью оригинального комплекта присоединительных штуцеров. В других случаях должны быть предусмотрены прямые участки не менее 3 Ду до и 1 Ду после счетчика.

11.3. Монтаж

Монтаж и демонтаж счетчика, как и устранение неисправностей, следует доверять только квалифицированному персоналу, внимательно изучившему настоящий паспорт. При несоблюдении указанных здесь рекомендаций не гарантируется заявленная точность измерений.

Счетчик можно монтировать как на вертикальных, так и на горизонтальных участках трубопровода, ЖК-дисплеем вверх.

При монтаже расходомеров необходимо соблюдать следующие условия:

- направление стрелки на корпусе счетчика должно совпадать с направлением потока воды в трубопроводе;
- перед теплосчетчиком обязательно должен быть установлен фильтр
- присоединительные штуцеры соединить с трубопроводом, установить оригинальные прокладки между штуцером и расходомером, затянуть накидные гайки;
- установить расходомер в трубопроводе без натягов, сжатий и перекосов;
- установить расходомер так, чтобы он был всегда заполнен водой;
- расходомер может устанавливаться на горизонтальном, наклонном и вертикальном трубопроводе.

При монтаже теплосчетчика в прямой (подающий) трубопровод, вкрутить в корпус теплосчетчика термометр с красной наклейкой. При монтаже теплосчетчика в обратный трубопровод, вкрутить в корпус теплосчетчика термометр с синей наклейкой.

Затяжка накидных гаек должна производится с моментом не более 40 Н•м (для контроля момента затяжки гайки рекомендуется применять динамометрический ключ по ГОСТ 33530-2015).

Датчики температур устанавливаются следующим образом:

При расположении теплосчетчика на обратной магистрали, датчик с синим

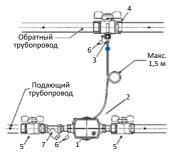
шильдиком уже смонтирован в гнезде расходомера, датчик с красным шильдиком устанавливается традиционным способом в гнездо шарового крана. При расположении теплосчетчика на подающей магистрали, датчик с красным шильдиком монтируется в гнезде расходомера; датчик с синим шильдиком устанавливается традиционным способом в гнездо шарового крана.

Датчики монтируются в гнездах с применением адаптера (рис. 2). Рекомендуемая последовательность действий:

- 1. Вставить датчик с адаптером в гнездо и совместить резьбу
- Завернуть адаптер до упора вручную, не прилагая при этом значительных усилий.

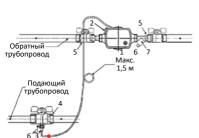
Рис. 2. Монтаж термодатчика в гнездо шарового крана.

После монтажа датчик должен перекрывать как минимум две трети диаметра трубопровода. Установленные датчики рекомендуется пломбировать.


! После установки расходомера проведение сварочных работ на трубопроводе не допускается.

Перед вводом расходомера в эксплуатацию проводят следующие операции:

- после монтажа расходомера воду подавать в магистраль медленно при открытых в ней воздушных клапанах для предотвращения разрушения расходомера под действием захваченного водой воздуха;
- проверить герметичность выполненных соединений;
- соединения должны выдерживать давление 1,6 МПа.


! Во вновь вводимую отопительную систему (дом-новостройка), после капитального ремонта или замены некоторой части труб расходомер можно устанавливать только после пуска системы в эксплуатию и тщательной ее промывки (2-3 недели). На период ремонта отопительной сети расходомеры рекомендуется демонтировать и временно заменить соответствующей проставкой.

- 1. Счетчик тепла
- Термодатчик сопротивления на подающем трубопроводе (красная шильда)
- 3. Термодатчик сопротивления на трубопроводе (синяя шильда)
- 4. Кран шаровый для подключения термодатчика
- 5. Запорный шаровый кран
- 6. Пломба
- 7. Фильтр

Рис. 3. Принципиальная схема общая подающий трубопровод.

- 1. Счетчик тепла
- 2. Термодатчик сопротивления на подающем трубопроводе (красная шильда)
- Термодатчик сопротивления на трубопроводе (синяя шильда)
- 4. Кран шаровый для подключения термодатчика
- 5. Запорный шаровый кран
- 6. Пломба
- 7. Фильтр

Рис. 4. Принципиальная схема общая обратный трубопровод.

Техническое обслуживание должно проводится лицами, изучившими настоящее руководство по эксплуатации. Техническое обслуживание состоит из:

- 1) Периодического технического обслуживания в процессе эксплуатации;
- 2) Технического обслуживания перед проведением поверки.

Периодическое обслуживание заключается в осмотре внешнего вида счетчика-регистратора, в снятии и сверке измерительной информации, подводке внутренних часов, в устранении причин, вызывающих ошибки в работе.

Осмотр рекомендуется проводить не реже 1 раз в 6 месяцев, при этом проверяется надежность крепления прибора на месте эксплуатации, состояние кабельных линий и сохранность пломб. Снятие информации следует проводить с использованием персонального компьютера через интерфейс. Обслуживание перед поверкой заключается в замене литиевой батареи.

12. ПОВЕРКА

Теплосчетчик подлежит поверке, согласно документу МЦКЛ.0227.МП «Теплосчетчики компактные «SANEXT». Методика поверки». Периодическая поверка проводится *один раз в шесть лет.*

13. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Теплосчетчик в упаковке предприятия-изготовителя можно транспортировать любым видом транспорта в крытых транспортных средствах на любые расстояния. Во время транспортирования и погрузочно- разгрузочных работ транспортная тара не должна подвергаться резким ударам и прямому воздействию атмосферных осадков и пыли.

Предельные условия хранения и транспортирования:

- 1) температура окружающего воздуха от минус 25 до плюс 55 °C;
- 2) относительная влажность воздуха не более 95%;
- 3) атмосферное давление не менее 61,33 кПа (460 мм рт. ст.).

Хранение приборов в упаковке на складах изготовителя и потребителя должно соответствовать условиям хранения «5» по ГОСТ 15150.

14. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Изготовитель гарантирует соответствие изделия требованиям ТУ 4218-001-13174411-2016 при соблюдении потребителем условий эксплуатации, хранения, транспортирования и монтажа. Гарантийный срок 60 месячев. Изготовитель не принимает рекламации, если теплосчетчики вышли из строя по вине потребителя из-за неправильной эксплуатации или при несоблюдении указаний, приведенных в настоящем «Руководстве». В гарантийный ремонт принимаются теплосчетчики полностью укомплектованные и с настоящим руководством. По вопросам, связанным с качеством продукции, следует обращаться на предприятие-изготовитель:

197022 г. Санкт-Петербург, ул. Академика Павлова, д.5, лит. В, тел.: (812) 317-21-11 e-mail: heatmeter@sanext.ru: www.sanext.ru

15. ДАННЫЕ О ПЕРИОДИЧЕСКОЙ ПОВЕРКЕ

Вычислитель подвергается вторичной поверке перед истечением межповерочного интервала или после проведения ремонта. Поверка производится согласно методике поверки теплосчетчика. Результаты поверки должны быть зафиксированы в таблице, приведенной ниже:

Дата и вид поверки	Организация - поверитель	Результаты поверки	Подпись поверителя и оттиск клейма

Таблица 8. Данные о периодической поверке.

16. СВИДЕТЕЛЬСТВО О ПЕРВИЧНОЙ ПОВЕРКЕ

Теплосчетчик Sanext Mono CM-1 прошел поверку в соответствии с таблицей. Межповерочный интервал составляет 6 лет с момента первичной поверки.

Номер теплосчетчика:	
Тип счетчика	механический
Модель счетчика	SANEXT Mono CM-1
Подающий / обратный трубопровод:	
Дата поверки:	
Наименование поверочной лаборатории:	
Поверитель:	
Место печати	

Таблица 9. Свидетельство о периодической поверке.

Паспорт необходимо сохранять в течение всего срока эксплуатации теплосчетчика. Для проведения периодической поверки необходимо наличие данного паспорта.