

IRFIX V-ICE

Химический Анкер EASF

Назначение:

Химический анкер IRFIX V-ICE - это двухкомпонентная система на основе на основе эпоксиакрилата. Продукт предназначен для профессионального крепежа деталей при температуре до -18⁰C. Поскольку в его состав не входят стирол и винилтолуол (VT), продукт практически не имеет запаха и идеально подходит для внутреннего и наружного применения.

IRFIX V-ICE предназначен для тяжелых условий эксплуатации в бетоне без трещин и каменной кладке, а также во многих других базовых материалах, таких как газобетон, легкие монолитные или пустотелые бетонные блоки или силикатный кирпич. Идеален для крепления каменных опор, балконных парапетов, спутниковых тарелок, трубопроводных систем, систем освещения и вентиляции, фасадов, элементов окон, навесов, стальных конструкций, ворот, ограждений, лестниц, станков, поручней и многоярусных стеллажей с помощью болтов, резьбовых шпилек и арматурных стержней. Также применяется для склеивания и восстановления недостающих частей в бетоне и кирпиче.

Свойства:

Зимний химический анкер разработан для применения в условиях отрицательных температур не ниже -18°C.

Подходит для применения в конструкциях из бетона с трещинами и без трещин, от M8 до M30. Арматура, используемая в качестве стержня диаметром от Ø8 до Ø32.

Используется для средне- и высоких нагрузок, статических или квазистатических.

Диапазон температур эксплуатации: от -40° С до $+80^{\circ}$ С (долгосрочная максимальная температура $+50^{\circ}$ С).

Срок службы 50 и/или 100 лет.

Состав не содержит стирола.

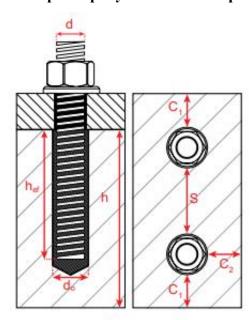
Совместимость со многими строительными материалами, включая перфорированный кирпич.

Низкое содержание запаха и ЛОС (А+).

Категория сейсмостойкости анкера (С1).

Применяется для наружных и внутренних работ.

Технические данные:


Основные физико-механические характеристики (таблица 1)

Наименование показателя	Ед.	Значение	Метод
	измерения		испытания
1		2	
Внешний вид материала		Паста серого цвета.	
Плотность (при +20°С)	гр/см3	1,7	ASTM D1875
Твердость по Шору	A	90	
Модуль упругости при	Н/мм ²	13800	ASTM D638
растяжении			
Прочность на сжатие	Н/мм ²	95	BS 6319
Тиксотропность		Выдерживает тест	
Температура эксплуатации		от -40°C до +80°C	
		(долгосрочная максимальная	
		температура +50°C)	
Температура нанесения, °С		от -18 до +30	

Время схватывания и минимальное время до нагружения анкеров (таблица 2)

Температура материала	-18 ⁰ C	от -18°С до	от -10 ⁰ С до	от 0 ⁰ C до	от +5 ⁰ C до	+15 ⁰ C
основания		-10°C	0^0 C	+5 ⁰ C	$+15^{0}$ C	
Температура картриджа	-18 ⁰ C	от -18°С до	от -10 ⁰ С до	от 0 ⁰ С до	от +5 ⁰ C до	$+15^{0}$ C
		-10°C	0^0 C	+5 ⁰ C	+15 ⁰ C	
Время схватывания, мин	60	45	20	6	3	2
Минимальное время до	24 часа	960	360	240	75	45
нагружения анкеров, мин						

	Анкерная шпилька		M8	M10	M12	M16	M20	M24	M27	M30
d	диаметр анкерного болта или резьбы	MM	8	10	12	16	20	24	27	30
d_0	диаметр отверстия в основании	MM	10	12	14	20	24	28	32	35
d_{r}	диаметр отверстия в прикрепляемой детали (≤)	MM	9	12	14	18	22	26	30	33
d_b	диаметр стальной щетки (≥)	MM	12	14	16	20	26	30	34	37
h _{ef, min}	Минимальная эффективная глубина анкеровки	MM	60	60	70	80	90	96	108	120
h_{ef}	Глубина анкеровки	MM	80	90	110	125	170	210	250	280
h _{ef, max}	Максимальная эффективная глубина анкеровки (12*d)	MM	160	200	240	320	400	480	540	600
h_{\min}	Минимальная толщина бетонного основания	MM	h _{ef} +	-30мм≥1	00мм			$h_{ef}+2d_0$)	
T_{inst}	Контролируемый момент затяжки	Нм	10	20	40	80	120	160	180	200
Smin	Минимальный интервал (5*d)	MM	40	50	60	80	100	120	135	150
S _{sr, N}	Расстояние	MM	184	252	304	376	506	582	624	658
C _{min}	Минимальное расстояние от края (5*d)	MM	40	50	60	80	100	120	135	150
$C_{cr,N}$	Расстояние между краями	MM	92	126	152	188	253	291	312	329

Параметры установки арматурных стержней (рис.1, таблица 4)

	Диаметр арматурного стержня		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
d	диаметр анкерного болта или резьбы	MM	8	10	12	14	16	20	25	28	32
d_0	диаметр отверстия бурового долота	MM	12	14	16	18	20	24	32	35	40
d_b	диаметр стальной щетки (≥)	MM	14	16	18	20	22	26	34	37	41
h _{ef, min}	Минимальная эффективная глубина анкеровки	MM	60	60	70	75	80	90	100	112	128
$h_{\rm ef}$	Глубина анкеровки	MM	80	90	110	115	125	170	210	250	280
h _{ef, max}	Максимальная эффективная глубина анкеровки (12*d)	MM	160	200	240	280	320	400	500	560	640
h_{min}	Минимальная толщина бетонного основания	MM		30мм≥ 0мм				h _{ef} +2d ₀			
S_{\min}	Минимальный интервал (5*d)	MM	40	50	60	70	80	100	125	140	160
S _{sr, N}	Расстояние	MM	184	252	304	346	376	506	606	646	682
C _{min}	Минимальное расстояние от края (5*d)	MM	40	50	60	70	80	100	125	140	160
$C_{cr,N}$	Расстояние между краями	MM	92	126	152	173	188	253	303	323	341

Характерные значения сопротивления растягивающей нагрузке для анкеров*(таблица 5)

Диаметр резьбового стержня		M8	M10	M12	M16	M20	M24	M 27	M30	
Сталь класса 5.8										
Прочность на растяжение	$N_{Rk,s}$	кН	18	29	42	79	123	177	230	281
Коэффициент частичного запаса прочности	$\gamma_{\rm Ms}$	-				1	,5			
Сталь класса 8.8		ı								
Прочность на растяжение	$N_{Rk,s}$	кН	29	46	67	126	196	282	367	449
Коэффициент частичного запаса прочности	γ _{Ms}	-				1	,5			
Сталь класса 10.9	I.	ı								
Прочность на растяжение	$N_{Rk,s}$	кН	37	58	84	157	245	353	459	561
Коэффициент частичного запаса прочности	γMs	-				1	,4			
Марка нержавеющей стали А4-70										
Прочность на растяжение	$N_{Rk,s}$	кН	26	41	59	110	172	247	321	393
Коэффициент частичного запаса прочности	γ _{Ms}	-				1	,9			
Марка нержавеющей стали А4-80	I.	l								
Прочность на растяжение	$N_{Rk,s}$	кН	29	46	67	126	196	282	367	449
Коэффициент частичного запаса прочности	γMs	-				1	,6			
Марка нержавеющей стали 1,4529	1	1	ı							
Прочность на растяжение	$N_{Rk,s}$	кН	26	41	59	110	172	247	321	393
Коэффициент частичного запаса прочности	γMs	-				1	,5			
*Бетон C20/25		•	•							

^{*}Бетон С20/25

Характерные значения сопротивления сдвиговой нагрузке для анкеров st (таблица 6)

Диаметр резьбового стержня			M8	M10	M12	M16	M20	M24	M 27	M 30
Разрушение стали без плеча момента			1410	IVIIO	WIIZ	WITO	10120	10124	101 27	101 30
10										
Сталь класса 5.8					1			T	T	
Прочность на сдвиг	$V_{Rk,s}$	кН	9	15	21	39	61	88	115	140
Коэффициент частичного запаса прочности	γMs	-				1	,25			
Сталь класса 8.8								1	101	
Прочность на сдвиг	$V_{Rk,s}$	кН	15	23	34	63	98	141	184	224
Коэффициент частичного запаса прочности	γ_{Ms}	-				1	,25			
Сталь класса 10.9					1 1			T	T	
Прочность на сдвиг	$V_{Rk,s}$	кН	18	29	42	79	123	177	230	281
Коэффициент частичного запаса прочности	γ_{Ms}	-					1,5			
Марка нержавеющей стали А4-70		1			1			T	ı	1
Прочность на сдвиг	$V_{Rk,s}$	кН	13	20	30	55	86	124	161	196
Коэффициент частичного запаса прочности	γ_{Ms}	-				1	,56			
Марка нержавеющей стали А4-80	1	•	•		,		•		T	
Прочность на сдвиг	$V_{Rk,s}$	кН	15	23	34	63	98	141	185	224
Коэффициент частичного запаса прочности	γMs	-				1	,33			
Марка нержавеющей стали 1,4529										
Прочность на сдвиг	$V_{Rk,s}$	кН	13	20	30	55	86	124	161	196
Коэффициент частичного запаса прочности	γMs	-				1	,25			
Разрушение стали с плечом момента										
Сталь класса 5.8										
Прочность на сдвиг	M^0_{Rk}	кН	19	37	66	166	325	561	832	1125
Коэффициент частичного запаса прочности	γMs	-			1	1	,25	ı		
Сталь класса 8.8	1113						<u>-</u>			
Прочность на сдвиг	M^0_{Rk}	кН	30	60	105	266	519	898	1332	1799
Коэффициент частичного запаса прочности	γMs	-			1	1	,25	ı		
Сталь класса 10.9	1115									
Прочность на сдвиг	M^0_{Rk}	кН	37	75	131	333	649	1123	1664	2249
Коэффициент частичного запаса прочности	γ _{Ms}	-					1,5		l.	l .
Марка нержавеющей стали А4-70	1113	I					-			
Прочность на сдвиг	M^0_{Rk}	кН	26	52	92	233	454	786	1165	1574
Коэффициент частичного запаса прочности	γ _{Ms}	-				1	,56		1	
Марка нержавеющей стали А4-80	1115	I					·			
Прочность на сдвиг	M^0_{Rk}	кН	30	60	105	266	519	898	1332	1799
Коэффициент частичного запаса прочности	γ _{Ms}	-			1		,33			
Марка нержавеющей стали 1,4529	11/18	1	<u> </u>				•			
Прочность на сдвиг	M^0_{Rk}	кН	26	52	92	233	454	786	1165	1574
Коэффициент частичного запаса прочности	γ _{Ms}	_		l	1		,25		<u> </u>	I.
Разрушение от выкалывания бетона основани							<u> </u>			
Коэффициент учета глубины анкеровки	k3	l -					2.0			
Коэффициент запаса прочности при	γ ₂ =	_					1.0			
монтаже	γ2- γinst									
	7 mst									
L										

Разрушение бетонного края-анкер (таблица 7)

Диаметр резьбового стержня			M8	M10	M12	M16	M20	M24	M 27	M 30
Наружный диаметр крепежного элемента	d_{nom}	MM	8	10	12	16	20	24	27	30
Эффективная длина крепежа	$\ell_{ m f}$	MM				min(he	, 8*d _{nom})			
Коэффициент установки	$\gamma_2 =$	-					1			
	γ_{inst}									

Характерная прочность сцепления при растягивающей нагрузке в бетоне –анкер C20/25¹ (таблица 8)

К.	ласс	Диапазон	Глубина	Разм	Размер		M10	M12	M16	M20	M24	M 27	M30
бе	тона	температур ²	анкеровки	анке	анкера								
			h _{ef,min}	$N_{Rk,p}$	кН	15.1	22.6	31.7	48.3	62.2	79.6	91.6	101.8
6e3	Н	$+24^{0}C/+40^{0}C$	h _{ef,standart}	$N_{Rk,p}$	кН	20.1	33.9	49.8	75.4	117.5	174.2	212.1	237.5
9 н	трещин		$h_{ef,max=20*d}$	$N_{Rk,p}$	кН	40.2	75.4	108.6	193.0	276.5	398.1	458.0	508.9
Бетон	peı		h _{ef,min}	$N_{Rk,p}$	кН	11.3	16.0	22.4	34.2	48.1	61.5	64.1	73.5
Pe	Τ	$+50^{0}$ C $/+80^{0}$ C	h _{ef,standart}	$N_{Rk,p}$	кН	15.1	24.0	35.2	53.4	90.8	134.6	148.4	171.5
			h _{ef,max=20*d}	$N_{Rk,p}$	кН	30.2	53.4	76.9	136.7	213.6	307.6	320.6	367.6
		+24°C / +40°C	$h_{\mathrm{ef},\mathrm{min}}$	$N_{Rk,p}$	кН	7.8	9.8	14.0	21.3	30.0	39.8	57.7	73.5
ပ	МИ		h _{ef,standart}	$N_{Rk,p}$	кН	10.5	14.7	22.0	33.3	56.6	87.1	133.6	171.5
HC	тна		h _{ef,max=20*d}	$N_{Rk,p}$	кН	20.9	32.7	48.0	85.3	133.2	199.1	288.6	367.6
Бетон	грещинами	+50°C /+80°C	h _{ef,min}	N _{Rk} , _p	кН	5.5	6.9	9.8	14.9	21.0	27.9	40.4	51.5
P	тре		h _{ef,standart}	$N_{Rk,p}$	кН	7.3	10.3	15.4	23.3	39.6	61.0	93.5	120.1
	•		h _{ef,max=20*d}	$N_{Rk,p}$	кН	14.6	22.9	33.6	59.7	93.2	139.3	202.0	257.3

¹ более подробная информации о нагрузке в DOP

Характерные значения сопротивления растягивающей нагрузке для арматуры*(таблица 9)

Размер	<u>, </u>				Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Арматура класс BSt 500 S	$N_{Rk,s}$	кН	28	43	62	85	111	173	270	339	442
Коэффициент частичного запаса прочности	γMs	-					1,5				

Характерные значения сопротивления сдвиговой нагрузке для арматуры^{*} (таблица 10)

Размер	1					Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Разрушение без плеча момента											
Арматура класс BSt 500 S	$V_{Rk,s}$	кН	14	22	31	42	55	86	135	169	221
Коэффициент частичного запаса прочности	γ _{Ms}	ı					1,5				
Коэффициент пластичности в соответствии с CEN/TS 1992-4-5 6.3.2.1	k ₂	-					0.8				

² Кратковременная температура / долгосрочная температура. Долговременная температура бетона остается примерно постоянной в течение значительных периодов времени. Кратковременные повышенные температуры - это те, которые возникают через короткие промежутки времени, например, в результате суточного циклирования.

								П	одолже	ние табл	ицы 10
Разрушение с плечом момента											
Арматура класс BSt 500 S	$V_{Rk,s}$	кН	33	65	112	178	265	518	1013	1422	2122
Разрушение от выкалывания бетона											
Коэффициент учета глубины анкеровки	k ₃	-					2.0				
Коэффициент запаса прочности при монтаже	$\gamma_2 = \gamma_{inst}$	-					1.0				

Разрушение бетонного края-арматура (таблица 11)

Размер	•			Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Наружный диаметр крепежного	d_{nom}	MM	8	10	12	14	16	20	25	28	32
элемента											
Эффективная длина крепежа	ℓ_{f}	MM				mir	n (h _{ef} , 8	3*d _{nom})	l		
Коэффициент установки	$\gamma_2 =$	-					1,0)			
	γ_{inst}										

Характерная прочность сцепления при растягивающей нагрузке в бетоне C20/25-арматура¹ (таблица 12)

Кл	acc	Диапазон	Глубина	Разі	мер	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø 28	Ø32
бет	она	температур ²	анкеровки	арма	гуры									
		+24°C /	$h_{\rm ef,min}$	$N_{Rk,p}$	кН	15,1	22,6	31,7	39,6	46,2	62,2	78,5	98,5	109,4
6e3	H	$+40^{0}$ C	h _{ef,standart}	$N_{Rk,p}$	кН	20,1	33,9	49,8	60,7	72,3	117,5	164,9	219,9	239,3
9 н	грещин		hef,max=20*d	$N_{Rk,p}$	кН	40,2	75,4	108,6	147,8	185,0	276,5	392,7	492,6	546,9
Бетон	peī	+50°C	h _{ef,min}	$N_{Rk,p}$	кН	10,9	16,3	22,8	28,5	33,3	44,8	56,5	67,0	74,4
Pe	T	/+80°C	hef,standart	$N_{Rk,p}$	кН	14,5	24,4	35,8	43,7	52,0	84,6	118,8	149,5	162,7
			h _{ef,max=20*d}	$N_{Rk,p}$	кН	29,0	54,3	78,2	106,4	133,2	199,1	282,7	335,0	371,9
		+24°C /	h _{ef,min}	$N_{Rk,p}$	кН	7,8	9,8	14,0	17,5	21,3	31,1	49,5	64,0	83,6
ပ	МИ	$+40^{0}$ C	hef,standart	$N_{Rk,p}$	кН	10,5	14,7	22,0	26,8	33,3	58,7	103,9	142,9	183,0
	ша		h _{ef,max=20*d}	$N_{Rk,p}$	кН	20,9	32,7	48,0	65,3	85,3	138,2	247,4	320,2	418,2
Бетон	ĬĮ.	+50°C	h _{ef,min}	$N_{Rk,p}$	кН	5,5	6,9	9,8	12,2	14,9	21,8	34,6	44,8	58,5
Р	трещинами	/+80°C	hef,standart	$N_{Rk,p}$	кН	7,3	10,3	15,4	18,8	23,3	41,1	72,7	100,1	128,1
	1.6		hef,max=20*d	$N_{Rk,p}$	кН	14,6	22,9	33,6	45,7	59,7	96,8	173,2	224,1	292,7

¹ более подробная информации о нагрузке в DOP

² Кратковременная температура / долгосрочная температура. Долговременная температура бетона остается примерно постоянной в течение значительных периодов времени. Кратковременные повышенные температуры - это те, которые возникают через короткие промежутки времени, например, в результате суточного циклирования

Расчетные значения сопротивления

растягивающей нагрузке-анкер (таблица 13)

Диаметр рез	вьбового	стержня	M8	M10	M12	M16	M20	M24	M27	M 30
Сталь класса 5.8	- 174,5					53	82	118	153	187
Сталь класса 8.8	$N_{Rd,s}$	кН	19	31	45	84	131	188	245	299
Сталь класса 10.9	Сталь класса 10.9 N _{Rd,s} кН				60	112	175	252	328	401
Марка нержавеющей стали А4-70	$N_{Rd,s}$	кН	14	22	31	58	91	130	169	207
Марка нержавеющей стали А4-80	$N_{Rd,s}$	кН	18	29	42	79	123	176	229	281
Марка нержавеющей стали 1,4529	$N_{Rd,s}$	кН	17	27	39	73	115	165	214	262

Расчетные значения сопротивления сдвиговой нагрузке-анкер (таблица 14)

Диаметр рез	вьбового	стержня	M8	M10	M12	M16	M20	M24	M27	M30
Сталь класса 5.8	· 10,5					31	49	70	92	112
Сталь класса 8.8	$V_{Rd,s}$	кН	12	18	27	50	78	113	147	179
Сталь класса 10.9						53	82	118	153	187
Марка нержавеющей стали А4-70	$V_{Rd,s}$	кН	8	13	19	35	55	79	103	126
Марка нержавеющей стали А4-80	$V_{Rd,s}$	кН	11	17	26	47	74	106	138	168
Марка нержавеющей стали 1,4529	$V_{Rd,s}$	кН	10	16	24	44	69	99	129	157

Расчетная прочность сцепления при растягивающей нагрузке в бетоне C20/25-анкер¹ (таблица 15)

K	пасс	Диапазон	Глубина	Разм	иер	M8	M10	M12	M16	M20	M24	M 27	M30
бе	тона	температур ²	анкеровки	анке	epa								
			h _{ef,min}	$N_{Rk,p}$	кН	10,1	12,6	17,6	26,8	34,6	44,2	50,9	56,5
6e3	Н	$+24^{0}$ C / $+40^{0}$ C	h _{ef,standart}	$N_{Rk,p}$	кН	13,4	18,8	27,6	41,9	65,3	96,8	117,8	131,9
9 н	трещин		h _{ef,max=20*d}	$N_{Rk,p}$	кН	26,8	41,9	60,3	107,2	153,6	221,2	254,5	282,7
Бетон	peı		$h_{\rm ef,min}$	$N_{Rk,p}$	кН	7,5	8,9	12,5	19,0	26,7	34,2	35,6	40,8
Pe	Τ	$+50^{0}$ C $/+80^{0}$ C	h _{ef,standart}	$N_{Rk,p}$	кН	10,1	13,4	19,6	29,7	50,4	74,8	82,5	95,3
			h _{ef,max=20*d}	$N_{Rk,p}$	кН	20,1	29,7	42,7	76,0	118,7	170,9	178,1	204,2
		+24°C / +40°C	$h_{\rm ef,min}$	$N_{Rk,p}$	кН	5,2	5,4	7,8	11,8	16,7	22,1	32,1	40,8
ပ	МИ		h _{ef,standart}	$N_{Rk,p}$	кН	7,0	8,2	12,2	18,5	31,5	48,4	74,2	95,3
	щ		h _{ef,max=20*d}	$N_{Rk,p}$	кН	13,9	18,2	26,6	47,4	74,0	110,6	160,3	204,2
Бетон	Ì	+50°C /+80°C	h _{ef,min}	$N_{Rk,p}$	кН	3,7	3,8	5,4	8,3	11,7	15,5	22,4	28,6
P	трещинами		h _{ef,standart}	$N_{Rk,p}$	кН	4,9	5,7	8,5	13,0	22,0	33,9	52,0	66,7
	•		h _{ef,max=20*d}	$N_{Rk,p}$	кН	9,8	12,7	18,6	33,2	51,8	77,4	112,2	142,9

¹ более подробная информации о нагрузке в DOP

² Кратковременная температура / долгосрочная температура. Долговременная температура бетона остается примерно постоянной в течение значительных периодов времени. Кратковременные повышенные температуры - это те, которые возникают через короткие промежутки времени, например, в результате суточного циклирования.

Расчетные значения сопротивления растягивающей нагрузке

-арматура*(таблица **14**)

Размер	1					Ø16	Ø20	Ø25	Ø28	Ø32
Арматура класс BSt 500 S N	√ _{Rk,s} кН	18	29	41	56	74	115	180	226	295

Расчетные значения сопротивления сдвиговой нагрузке

-арматура*(таблица 15)

Размер	1					Ø16	Ø20	Ø25	Ø28	Ø32
Арматура класс BSt 500 S V _{Rk}	Арматура класс BSt $500 \mathrm{S}$ $ \mathrm{V}_{\mathrm{Rk,s}} $ кН				28	37	58	90	113	147

Расчетная прочность сцепления при растягивающей нагрузке

в бетоне C20/25-арматура¹ (таблица 16)

Кла	acc	Диапазон	Глубина	Разг	мер	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø 28	Ø32
бет	она	температур ²	анкеровки	арма	гуры									
		+24°C /	h _{ef,min}	$N_{Rk,p}$	кН	10,1	12,6	17,6	22,0	25,7	34,6	43,6	54,7	60,8
6e3	н	+40°C	hef,standart	$N_{Rk,p}$	кН	13,4	18,8	27,6	33,7	40,1	65,3	91,6	122,2	132,9
	ЦИ		hef,max=20*d	$N_{Rk,p}$	кН	26,8	41,9	60,3	82,1	102,8	153,6	218,2	273,7	303,8
Бетон	грещин	+50°C	$h_{\rm ef,min}$	$N_{Rk,p}$	кН	7,2	9,0	12,7	15,8	18,5	24,9	31,4	37,2	41,3
Pe	Τ	/+80°C	hef,standart	$N_{Rk,p}$	кН	9,7	13,6	19,9	24,3	28,9	47,0	66,0	83,1	90,4
			hef,max=20*d	$N_{Rk,p}$	кН	19,3	30,2	43,4	59,1	74,0	110,6	157,1	186,1	206,6
		+24°C /	$h_{\rm ef,min}$	$N_{Rk,p}$	кН	5,2	5,34	7,8	9,7	11,8	17,3	27,5	35,6	46,5
ပ	МИ	+40°C	hef,standart	$N_{Rk,p}$	кН	7,0	8,2	12,2	14,9	18,5	32,6	57,7	79,4	101,6
	тна		h _{ef,max=20*d}	$N_{Rk,p}$	кН	13,9	18,2	26,6	36,3	47,4	76,8	137,4	177,9	232,3
Бетон	Ĭ	+50°C	$h_{\rm ef,min}$	$N_{Rk,p}$	кН	3,7	3,8	5,4	6,8	8,3	12,1	19,2	24,9	32,5
P	трещинами	/+80°C	hef,standart	$N_{Rk,p}$	кН	4,9	5,7	8,5	10,4	13,0	22,8	40,4	55,6	71,2
	1.4		h _{ef,max=20*d}	$N_{Rk,p}$	кН	9,8	12,7	18,6	25,4	33,2	53,8	96,2	124,5	162,6

¹ более подробная информации о нагрузке в DOP

Рекомендуемые максимальные нагрузки на растяжение-анкер (таблица 17)

Рекомендуемые нагрузки действительны только для одиночного анкера приблизительной конструкции, если соблюдаются следующие условия: $c \ge c_{cr,N}$ $s \ge s_{cr,N}$ $h \ge 2*h_{ef}$ Коэффициенты безопасности уже включены в рекомендуемые нагрузки.

Диаметр рез	вьбового с	тержня	M8	M10	M12	M16	M20	M24	M27	M30
Сталь класса 5.8	2 (100,5					38	59	84	110	134
Сталь класса 8.8	$N_{Rec,s}$	кН	14	22	32	60	93	134	175	214
Сталь класса 10.9	Сталь класса 10.9 N _{Rec,s} кН				43	80	125	180	234	286
Марка нержавеющей стали А4-70	N _{Rec,s}	кН	10	15	22	41	65	93	121	148
Марка нержавеющей стали А4-80	$N_{Rec,s}$	кН	13	21	30	56	88	126	164	200
Марка нержавеющей стали 1,4529	$N_{Rec,s}$	кН	12	20	28	52	82	118	153	187

² Кратковременная температура / долгосрочная температура. Долговременная температура бетона остается примерно постоянной в течение значительных периодов времени. Кратковременные повышенные температуры - это те, которые возникают через короткие промежутки времени, например, в результате суточного циклирования

Рекомендуемые максимальные нагрузки на срез-анкер (таблица 18)

Диаметр рез	Диаметр резьбового стержня						M20	M24	M27	M30
Сталь класса 5.8	· Rus				12	22	35	50	66	80
Сталь класса 8.8	$V_{Rd,s}$	кН	9	13	19	36	56	81	105	128
Сталь класса 10.9	$V_{Rd,s}$	кН	9	14	20	38	59	84	110	134
Марка нержавеющей стали А4-70	$V_{Rd,s}$	кН	6	9	14	25	39	57	74	90
Марка нержавеющей стали А4-80	$V_{Rd,s}$	кН	8	12	18	34	53	76	99	120
Марка нержавеющей стали 1,4529	$V_{Rd,s}$	кН	7	11	17	31	49	71	92	112

Максимальная растягивающая нагрузка в бетоне С20/25-анкер (таблица 19)

K.	ласс	Диапазон	Глубина	Разме	p	M8	M10	M12	M16	M20	M24	M 27	M30
бе	тона	температур ²	анкеровки	анкер	a								
		+24°C /	$h_{\rm ef,min}$	$N_{Rek,p.stat}$	кН	7.2	9.0	12.6	19.1	24.7	31.6	36.4	40.4
e3	Н	+40°C	h _{ef,standart}	$N_{Rek,p.stat}$	кН	9.6	13.5	19.7	29.9	46.6	69.1	84.1	94.2
9 н	ЦИ		$h_{ef,max=20*d}$	$N_{Rek,p.stat}$	кН	19.1	29.9	43.1	76.6	109.7	158.0	181.8	202.0
Бетон без	грещин	+50°C	h _{ef,min}	$N_{Rek,p.stat}$	кН	5.4	6.4	8.9	13.6	19.1	24.4	25.34	29.2
Pe	Τ	/+80°C	hef,standart	$N_{Rek,p.stat}$	кН	7.2	9.5	14.0	21.2	36.0	53.4	58.9	68.1
			h _{ef,max=20*d}	$N_{Rek,p.stat}$	кН	14.4	21.2	30.5	54.3	84.8	122.1	127.2	145.9
			h _{ef,min}	$N_{Rek,p.stat}$	кН	3.7	3.9	5.6	8.5	11.9	15.8	22.9	29.2
				N _{Rek,p.seis}	кН	2.5	2.6	3.8	5.8	8.1	10.9	15.8	20.1
и		+24 ⁰ C /	h _{ef,standart}	$N_{Rek,p.stat}$	кН	5.0	5.8	8.7	13.2	22.5	34.6	53.0	68.1
аМ				N _{Rek,p.seis}	кН	3.4	4.0	5.9	9.0	15.3	23.8	36.6	47.0
HIX)		+40°C	h _{ef,max=20*d}	N _{Rek,p.stat}	кН	10.0	13.0	19.0	33.8	52.9	79.0	114.5	145.9
Бетон с трещинами				N _{Rek,p.seis}	кН	6.8	8.8	12.9	23.0	35.9	54.5	79.0	100.6
T			h _{ef,min}	N _{Rek,p.stat}	кН	2.6	2.7	3.9	5.9	8.3	11.1	16.0	20.4
) Н		+50°C/		N _{Rek,p.seis}	кН	1.8	1.9	2.6	4.0	5.7	7.6	11.1	14.1
eTC		+80°C	h _{ef,standart}	$N_{Rek,p.stat}$	кН	3.5	4.1	6.1	9.3	15.7	24.2	37.1	47.6
P		100 C		N _{Rek,p.seis}	кН	2.4	2.8	4.2	6.3	10.7	16.7	25.6	32.9
			h _{ef,max=20*d}	$N_{Rek,p.stat}$	кН	7.0	9.1	13.3	23.7	37.0	55.3	80.2	102.1
	1 -			N _{Rek,p.seis}	кН	4.7	6.2	9.1	16.1	25.2	38.2	55.3	70.5

¹ более подробная информации о нагрузке в DOP

Максимальные рекомендуемые значения нагрузки на растяжение -арматура*(таблица 20)

Размер	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32		
Арматура класс BSt 500 S N _{Rk,s} кН				21	30	40	53	82	129	161	211

² Кратковременная температура / долгосрочная температура. Долговременная температура бетона остается примерно постоянной в течение значительных периодов времени. Кратковременные повышенные температуры - это те, которые возникают через короткие промежутки времени, например, в результате суточного циклирования.

Максимальные рекомендуемые значения нагрузки на срез

-арматура*(таблица 21)

Размер					Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Арматура класс BSt 500 S	$V_{Rk,s}$	кН	7	10	15	20	26	41	64	81	105

Максимальная растягивающая нагрузка в бетоне С20/25

-арматура (таблица 22)

Класс	Диапазон	Глубина	Разме	p	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø 28	Ø32
бетона	температур ²	анкеровки	армату	ры									
Бетон без трещин	+24°C /	hef,min	N _{Rec,p.stat}	кН	7,2	9,0	12,6	15,7	18,4	24,7	31,2	39,1	43,4
	+40°C	h _{ef,standart}	N _{Rec,p.stat}	кН	9,6	13,5	19,7	24,1	28,7	46,6	65,4	87,3	94,9
		hef,max=20*d	N _{Rec,p.stat}	кН	19,1	29,9	43,1	58,6	73,4	109,7	155,8	195,5	217,0
	+50°C	h _{ef,min}	N _{Rec,p.stat}	кН	5,2	6,5	9,0	11,3	13,2	17,8	22,4	26,6	29,5
Δ .	/+80°C	hef,standart	N _{Rec,p.stat}	кН	6,9	9,7	14,2	17,3	20,6	33,6	47,1	59,3	64,6
		hef,max=20*d	N _{Rec,p.stat}	кН	13,8	21,5	31,0	42,2	52,9	79,0	112,2	132,9	147,6
	+24 ⁰ C / +40 ⁰ C	h _{ef,min}	N _{Rec,p.stat}	кН	3,7	3,9	5,6	6,9	8,5	12,3	19,6	25,4	33,2
			N _{Rek,p.seis}	кН	2,7	2,8	4,0	5,0	6,0	8,8	14,0	18,2	23,7
		hef,standart	N _{Rec,p.stat}	кН	5,0	5,8	8,7	10,6	13,2	23,3	41,2	56,7	72,6
МИ			N _{Rek,p.seis}	кН	3,6	4,2	6,2	7,6	9,4	16,7	29,5	40,5	51,9
ина		h _{ef,max}	N _{Rec,p.stat}	кН	10,0	13,0	19,0	25,9	33,8	54,9	98,21	127,1	166,0
Бетон с трешинами		=20*d	N _{Rek,p.seis}	кН	7,1	9,3	13,6	18,5	24,2	39,2	70,1	90,8	118,5
c Tp	+50°C /+80°C	h _{ef,min}	N _{Rec,p.stat}	кН	2,6	2,7	3,9	4,9	5,9	8,6	13,7	17,8	23,2
но			$N_{Rek,p.seis}$	кН	1,8	1,9	2,6	3,3	4,0	6,0	9,5	12,3	15,8
Бет		h _{ef,standart}	$N_{Rec,p.stat}$	кН	3,5	4,1	6,1	7,4	9,3	16,3	28,9	39,7	50,8
			$N_{Rek,p.seis}$	кН	2,4	2,8	4,2	5,1	6,3	11,3	19,9	27,4	34,6
		h _{ef,max}	N _{Rec,p.stat}	кН	7,0	9,1	13,3	18,1	23,7	38,4	68,7	88,9	116,2
	1 5 5	=20*d	N _{Rek,p.seis}	кН	4,7	6,2	9,1	12,3	16,1	26,5	47,4	61,4	79,0

¹ более подробная информации о нагрузке в DOP

² Кратковременная температура / долгосрочная температура. Долговременная температура бетона остается примерно постоянной в течение значительных периодов времени. Кратковременные повышенные температуры - это те, которые возникают через короткие промежутки времени, например, в результате суточного циклирования.

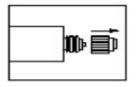
Химическая стойкость отвержденного анкера (таблица 23)

Химическая среда	Концентр.	Результат	Химическая среда	Концентр.	Результат
Раствор уксусной кислоты водн.	10%	G	Гетан	100%	С
Ацетон	100%	F	Гексан	100%	С
Раствор хлорида алюминия водн.	насыщ.	G	Раствор соляной кислоты водн.	10%	G
Нитрат алюминия в водн. растворе	10%	G	Раствор соляной кислоты водн.	15%	G
Водный раствор аммиака	5%	F	Раствор соляной кислоты водн	25%	С
Реактивное топливо	100%	F	Сероводород	100%	G
Бензин	100%	F	Изопропиловый спирт	100%	F
Бензойная кислота	насыщ.	G	Льняное масло	100%	G
Бензиловый спирт	100%	F	Смазочное масло	100%	G
Раствор гипохлорида натрия	15%	G	Минеральное масло	100%	G
Бугиловый спирт	100%	С	Парафин/керосин	100%	С
Раствор сульфата кальция водн.	насыщ.	G	Фенол в водном растворе	1%	F
Угарный газ	100%	G	Фосфорная кислота	50%	G
Четыреххлористый углерод	100%	С	Гидроксид натрия	10% pH13	С
Хлорная вода	насыщ	F	Морская вода	100%	С
Хлорбензол	100%	F	Стирол	100%	F
Раствор лимонной ксилоты водн.	насыщ.	G	Раствор диоксида серы	10%	G
Циклогексанол	100%	G	Серная кислота раствор водн	10%	G
Дизельное топливо	100%	G	Серная кислота раствор водн	50%	G
Диэтиленгликоль	100%	G	Скипидар	100%	С
Раствор этилового спирта водн	95%	F	Уайт спирит	100%	G
Раствор этилового спирта водн	20%	С	Ксилол	100%	F

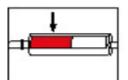
G- Стойкость до 75°С с сохранением свойств минимум на 80%

С- Стойкость до 25° С с сохранением свойств минимум на 80%

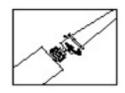
F- Не стойкий.


Расход химического анкера

Расход химического анкера зависит от размеров резьбового стержня и просверленного отверстия. В таблице 24, приведенной ниже, показан теоретический расход продукта с рекомендуемыми параметрами нанесения.

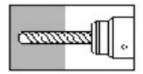

Анкерная шпилька		M10	M12	M16	M20	M24	M 27	M30
Диаметр резьбового стержня, мм		10	12	16	20	24	27	30
Диаметр отверстия в бетоне, мм		12	14	18	24	28	32	35
Глубина крепления, мм		90	110	125	170	210	250	280
Расход на лунку, мл		4	6	9	31	45	75	93
Количество установленных анкеров из		63	44	29	8	6	3	2
1 картриджа, шт								

Инструкция по применению:

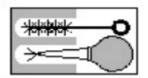

1.Подготовка картриджа

 Откройте колпачок на кончике картриджа.

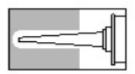
2. Вставьте картридж в монтажный пистолет

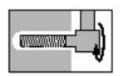


3. Установите смесительную насадку на картридж (Завинтите и затяните потуже)



4. Выдавите продукт на 10 см, чтобы обеспечить однородное перемешивание


2. Нанесение продукта


1. Выберите сверло, подходящее для диаметра анкера, указанного в таблице 3.

2. Очистите внутреннюю поверхность отверстия с помощью воздушного насоса и щетки.

3. Заполните отверстие на 2/3 путем выдавливания продукта

Установите анкерный стержень, вращая его.
 Лишний химический анкер должен выйти из отверстия.

Упаковка и хранение.

Картридж	Количество в кор.	Количество кор на палете				
300мл	6 шт	252 кор				

Храните продукт в оригинальной упаковке при температуре 22°С и избегайте контакта с прямыми солнечными лучами. Хранение при температуре ниже 5°С и выше 25°С может негативно сказаться на свойствах продукта. Материал, извлеченный из оригинальной упаковки, может быть загрязнен во время использования, что влияет как на адгезивные свойства, так и на срок хранения. Постащик не несет никакой ответственности за продукт, который был загрязнен или хранился в условиях, отличных от указанных ранее.

Гарантийный срок хранения – 18 месяцев в ненарушенной заводской упаковке

Меры безопасности:

См. паспорт безопасности

Дополнительная информация:

Данные предоставлены для информационных целей и не являются исчерпывающими. Потребитель, использующий продукт иначе, чем указано в листе данных, принимает на себя ответственность за полученные результаты. А также поставщик не несет ответственности за какиелибо результаты, полученные лицами, методы которых производитель не контролирует. Из-за разнообразия материалов и большого количества разнообразных способов применения, находящихся вне нашего контроля, мы не берем на себя ответственность за полученные результаты. В каждом случае рекомендуется провести предварительное испытание.

ООО"ПолимерТорг" 140093,Московская область г.Дзержинский, ул.Овиновка 29А Тел: +7(495) 290 09 95 www.irfix.ru