ЭЛЕКТРОННЫЕ ТАЙМЕРЫ СЕРИИ УМТ

Руководство по эксплуатации Паспорт

1. НАЗНАЧЕНИЕ

Электронные таймеры серии УМТ предназначены для управления исполнительными устройствами (включением и выключением) по заданной программе однократно или циклически. Используются в системах контроля, регулирования и управления технологическими процессами в различных отраслях промышленности и сельского хозяйства, где требуется автоматизировать процессы управления оборудованием, связанным с временными параметрами.

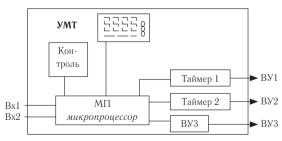
2. МОДИФИКАЦИИ ПРИБОРА

- 2.1. В состав серии входят одноканальные (УМТ1) и двухканальные (УМТ2) таймеры.
- 2.2. По варианту конструкции приборы отличаются исполнением корпусов, предназначенных для настенного или щитового крепления на объектах. Эскизы корпусов приведены в Приложении 1. Типы крепления корпуса:
 - Н1 настенный, с размерами 138x105x59 мм.
 - Щ2 щитовой, с размерами 96х48х100 мм.
 - 2.3. Типы встроенных выходных устройств прибора:
 - Р реле электромагнитные.
 - Т транзисторные оптопары п-р-п структуры.
 - С симисторные оптопары.

Информация о модификации прибора при заказе:

	Приоор <u>УМТх-хх</u> -	<u>X</u> .
Тип	УМТ/	//
Тип	корпуса/	/
Тип	выходного устройства/	

П: прибор УМТ2-H1-P — двухканальный таймер в корпусе настенного исполнения с двумя встроенными электромагнитными реле.


3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ

(50Гц)
4
5+50
3080
86107
2
01
25
1
2
9,9 сек
0,1
49
49
нечное
нечное
RE
5 B
0 мсек.
МИ
7
мА 50

3.16. Максимальный ток нагрузки симистор	ной
оптопары при напряжении до 400 В, мА	50
3.17. Степень защиты корпуса	
настенного исполнения (Н1)	IP54
3.18. Габаритные размеры корпуса Н1	138x105x59
3.19. Степень защиты корпуса Щ2	IP20
3.20. Габаритные размеры корпуса Щ2	96x48x100
3.21. Средний срок службы, лет, не менее	10
3 99 Масса прибора не более кГ	0.4

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ПРИБОРА

Функциональная схема прибора приведена на рис. 1. В зависимости от модификации, прибор имеет один или два независимых таймера, управляющие своими выходными устройствами. УМТ1 и УМТ2 имеют дополнительный независимый канал (ВУЗ), программируемый только на 1 временной интервал, по окончании которого (если он программно включен) выдается импульс длительностью 100мсек, использующийся для каскадирования приборов, перезапуска, сигнализации, или однократного запуска исполнительного устройства.

Puc. 1

Запуски, перезапуски, задержки включения таймеров в УМТ2 осуществляются программно, путем задания временных параметров соответствующего канала.

Управление таймерами (пуск, стоп, сброс) осуществляется с панели прибора или дистанционно. УМТ имеют два цифровых входа для дистанционного управления таймерами, к которым могут быть подключены контакты кнопок, выключателей, датчики, имеющие на выходе транзисторные ключи, другие датчики с напряжением низкого уровня от 0 до 1В и высокого уровня 2,4...30 В.

Каждый из таймеров может быть запрограммирован на временную последовательность, состоящую максимум из 49 (УМТ1) или 2х49(УМТ2) шагов (временных интервалов), повторяющихся от 1 до 99 (2х99) или бесконечное количество циклов. Максимальная величина каждого временного интервала (шага) составляет 99 часов 59 минут 59,9 секунд, с разрешающей способностью 0,1 сек.

Четырехразрядный цифровой индикатор отображает по выбору номер шага (программируемый интервал времени, в течение которого выходное устройство находится во включенном или выключенном состоянии), номер цикла (программы), обратный отсчет времени выполняемого шага. Индикация состояния выходных каналов, номер таймера, формат времени (час/мин, мин/сек) — светодиодная.

При отключении питания текущее состояние таймеров заносится в энергонезависимую память и при восстановлении питания УМТ продолжает выполнение программы.

Последовательность работы с прибором следующая:

 вводится программа функционирования прибора (последовательность технологических операций, определяемых временными интервалами включенного или выключенного состояния выходного устройства прибора реле, оптотранзистора или оптосимистора);

— запуск прибора на выполнение заданной программы. Запуск, останов или приостановление работы прибора может осуществляться с помощью клавиш, расположенных на передней панели прибора, или автоматически, используя цифровые входы прибора.

5. РАБОТА ПРИБОРА

5.1. Индикация и управление прибором.

Внешний вид лицевых панелей УМТ приведен на рисунках 2a-26.

Рис. 2а. Лицевая панель прибора УМТ1

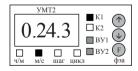


Рис. 2б. Лицевая панель прибора УМТ2

На четырехразрядном индикаторе отображается время, номер шага и номер цикла, а также параметры выходных устройств.

Светодиоды

- К1 и К2- показывают параметры или время какого таймера отображены на индикаторе
- ВУ1 и ВУ2 остояние выходных устройств первого и второго таймера.
- Ч/M, M/C порядок отображения временного интервала.
- шаг, цикл номер шага и номер цикла отображаемого таймера.
- кнопки «F», (↑пуск) и (↓стоп) служат для управления работой и программирования прибора.

5.2. Режимы работы прибора.

Эксплуатация прибора осуществляется в одном из трех режимов:

- режим останова;
- режим работы (выполнения программ);
- режим программирования.

Режим работы является основным режимом прибора, в нем производится обратный отсчет времени по заданной оператором программе.

Режим останова — ожидается команда старта или программирования.

Режим программирования — оператором осуществляется ввод программы функционирования прибора.

Режим останова

В данном режиме на индикаторе высвечивается «**Stop**», состояние выходных устройств — отключены.

Кратковременным нажатием клавиши (**^пуск**) производится запуск программы- переход в режим работы.

Кратковременное нажатие кнопки «F» (менее 3 сек.) — просмотр общего числа шагов, циклов каждого из каналов по кругу, при этом отображаются шаг и цикл соответствующего канала.

При длительном (более 3 сек) нажатии клавиши « \mathbf{F} » осуществляется переход в режим программирования.

Режим работы

Для запуска программы на выполнение используется клавиша (♠пуск). Кратковременное нажатие (менее 3 сек.) или подать сигнал «логический ноль» (замыкание контактов) длительностью 0.01 ... 3 сек. на цифровой вход «Вход1». В данном режиме на индикаторах отображается время (обратный отсчет), номер шага и номер канала. Для просмотра данных параметров используется клавиша «F» — кратковременное нажатие (менее 3 сек.), при нажатии на которую отображаются по очереди время, шаг, цикл одного из каналов, затем время, шаг, цикл другого канала и т. д., при этом светодиоды показывают какой канал (K1, K2) включен и что отображается на индикаторе (шаг, цикл, ч/м, м/с).

Для приостановления работы таймеров используется кратковременное нажатие клавиши (**Устоп**), или импульс длительностью 0.01 ... 3 сек. на цифровом входе «Вход2». При этом обратный отсчет времени остановлен, выходные устройства остаются в текущем состоянии на момент приостановления выполнения программы.

Для продолжения работы таймера необходимо нажать кнопку (\uparrow пуск) или подать импульс на «Вход1».

Для сброса программы или полного останова необходимо повторно нажать и удерживать (более 3 сек.) кнопку (Ψ стоп) или подать импульс длительностью не менее 3 сек. на цифровой вход «Bход2». При этом прибор перейдет в режим останова.

После выполнения программы одного из каналов издается короткий звуковой сигнал. После выполнения программ всех каналов издается длинный звуковой сигнал и прибор переходит в режим останова.

После выполнения программы одного из каналов в режиме работы прибор автоматически переключается на отображение времени другого канала.

При аварийном пропадании питания в режиме работы прибора в энергонезависимой памяти прибора автоматически сохраняется состояние каналов и текущее время (с точностью до 1 сек). При возобновлении питания прибор продолжает выполнение программы с момента остановки.

Режим программирования.

Используется для ввода программ функционирования прибора.

Кратковременное нажатие на кнопку « \mathbf{F} » осуществляет просмотр уже введенной программы, а клавишами (\uparrow пуск) и (\downarrow стоп) — редактирование просматриваемого параметра.

1. Для запуска режима программирования необходимо нажать и удерживать кнопку « \mathbf{F} » не менее 3 секунд, после чего на индикаторе отобразится надпись:

2. Кратковременное (менее 3 секунд) нажатие «F» – высвечивается:

01. on 01 — номер шага 1 канала, on — включенное состояние ВУ1

Отображается номер шага и состояние выходного устройства первого канала. Клавишей (\uparrow пуск) изменяется состояние — on, oF, End (on — включено, oF — выключено, End — конец программы для данного канала).

3. Кратковременное нажатие «F» — высвечивается:

0.00.0 - мигает последний сегмент

Вводятся значения времени для текущего шага (мигающий разряд) с помощью кнопки (**↑пуск**). При удержании её более 3 секунд — автоматическое изменение временного интервала. Для перемещения по разрядам времени сек. мин. часы используется кратковременное нажатие кнопки (**Чстоп**). Формат времени (справа налево) — десятые доли секунд, секунды, минуты, часы.

4. Кратковременное нажатие «F» фиксирует данный временной интервал и переводит к вводу или редактированию следующего шага. Причем состояние выходного устройства будет противоположным, чем в предыдущем шаге.

02. oF

После ввода последнего временного интервала, необходимого для данного технологического процесса, с помощью кнопки (**↑пуск**) выставляется символ окончания программирования «End» для 1-го канала:

End

5. После ввода последнего шага (временного интервала) для 1-го канала вводится количество циклов повторения данной программы.

Кратковременное нажатие клавиши «F» (менее 3 сек.), высвечивается:

CL. 01

- **CYCL** означает бесконечное количество циклов. Изменение количества циклов производится с помощью кнопок (\uparrow пуск) и (\downarrow стоп).
- 6. Программа для 2-го канала вводится аналогично первому. Кратковременное нажатие клавиши « \mathbf{F} », высвечивается:

01. oF

Клавишей (**↑пуск**) изменяется состояние выходного устройства — **on**, **oF**, или **End**.

7. После ввода количества циклов 2- го канала программируется временной интервал дополнительного канала (ВУ3). Кратковременное нажатие «F» (менее 3 сек.), высвечивается:

St. oF

Кнопкой (**^пуск**) выбирают оп или оF — включение или отключение данной опции.

- 8. Кратковременное нажатие кнопки «F» (менее 3 сек.) высвечивается:
 - 0.00.0 мигает последний сегмент

Производится установка временного интервала ВУЗ аналогично, как для 1 и 2 каналов.

9. Последняя опция позволяет менять направление отсчета времени. Кратковременное нажатие «F» — высвечивается:

 $\mathbf{C}\mathbf{\dot{q}}\mathbf{0}$ — обратный отсчет,

или Сч 1 — прямой отсчет

Изменение кнопками (\uparrow пуск) и (\downarrow стоп).

10. Кратковременное нажатие «F» приводит к выходу из режима программирования:

Out

11. Для записи внесенных параметров необходимо еще раз нажать кнопку « \mathbf{F} », после чего на индикаторе появится надпись \mathbf{StoP}

Редактирование записанной программы осуществляется аналогичным образом, при этом при просмотре программы на индикаторе будут отображаться введенные ранее параметры. Произвести изменение программы можно в любом месте просмотра или редактирования.

Если были допущены ошибки при программировании, такие как: указан бесконечный цикл повторов операций при всех нулевых временных интервалах какого либо канала; не указан последний шаг какого либо канала - запись измененной программы в память прибора производиться не будет — в ней останется предыдущая программа.

Если во время программирования была выдержана пауза длительностью более 20 сек. во время которой не было нажато ни одной кнопки, то прибор автоматически переходит в режим останова.

Выйти из режима программирования можно с помощью длительного нажатия кнопки (**Устоп**). При этом прибор без сохранения изменений в программе переходит в режим останова.

6. МОНТАЖ ПРИБОРА И ПОДГОТОВКА К РАБОТЕ

Установить прибор на штатное место и закрепить его. Габаритные и присоединительные размеры приборов в различных вариантах корпусов приведены в Приложении 1.

Проложить линии связи для соединения прибора с питающим напряжением, входными датчиками, и исполнительными механизмами. При выполнении монтажных работ использовать только стандартный инструмент.

При монтаже внешних связей необходимо обеспечить надежный контакт с клеммником прибора. Подсоединение проводов во всех вариантах корпусов осуществляется под

винт. Для доступа к клеммнику в приборе настенного крепления необходимо снять с него верхнюю крышку.

Подключение сети питания и исполнительных устройств управления производится по схеме соединений (Приложение 2).

После подключения всех необходимых связей подать на прибор питание. На цифровом индикаторе появится текущее состояние прибора.

Введите в прибор необходимые для выполнения технологического процесса параметры и задайте нужные рабочие режимы. Прибор готов к работе.

7. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

По способу защиты от поражения электрическим током прибор соответствует классу 0 по ГОСТ 12.2.007.0-75.

В приборе используется опасное для жизни напряжение. При установке прибора, устранении неисправностей и техническом обслуживании необходимо отключить прибор и подключаемые устройства от питающей сети.

Не допускается попадание влаги на контакты клеммника и внутренние элементы прибора. Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел т.п.

Подключение, техническое обслуживание и программирование прибора должны производиться квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

При эксплуатации и техобслуживании прибора необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей».

Внимание! В связи с наличием на клеммнике опасного для жизни напряжения приборы в корпусах щитового исполнения (модификации УМТ х-Щ2-х), должны устанавливаться в щитах управления, доступных только квалифицированным специалистам.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание прибора проводится не реже одного раза в шесть месяцев и состоит в контроле крепления прибора, контроле электрических соединений, а также удаления пыли и грязи с клеммника прибора.

Ремонт и калибровка прибора осуществляется на предприятии изготовителе или в сертифицированных им центрах.

9. СВЕДЕНИЯ О ТРАНСПОРТИРОВКЕ И ХРАНЕНИИ

Приборы транспортируются в закрытом транспорте любого вида. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта

Условия транспортирования должны соответствовать условиям ГОСТ 15150-69 при температуре окружающего воздуха от -40 до +55ОС с соблюдением мер защиты от ударов и вибраций.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать группе УХЛ по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси. Приборы хранят на стеллажах.

10. КОМПЛЕКТНОСТЬ

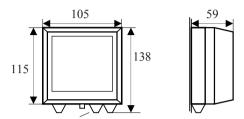
Прибор	1	шт.
Руководство по эксплуатации	1	шт.

11. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И ПРОДАЖЕ

Прибор УМТ_	зав. №		
соответствует	ТУ4217-003-99404139-07	И	признан
годным к эксплу	латации.		
Дата выпуска _			
Подпись и штам	ип ОТК		
Дата продажи			

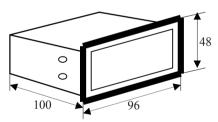
12. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие техническим условиям при соблюдении условий эксплуатации, транспортировки, хранения и монтажа.

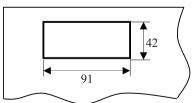

Гарантийный срок эксплуатации -24 месяца со дня продажи.

В случае выхода прибора из строя в течении гарантийного срока при условии соблюдения потребителем правил эксплуатации, транспортировки и хранения, изготовитель осуществляет его бесплатный ремонт или замену. Гарантийный ремонт осуществляется по адресу: 443090, г. Самара, ул. Сов. Армии, д. 180, стр. 3, ООО «ФЭА».

http://www.fea-samara.ru. τ/φ. (846) 273-49-36.

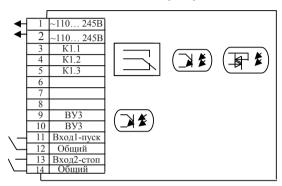

Приложение № 1. Эскизы корпусов УМТ

1. Корпус настенного крепления Н1.

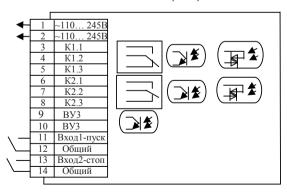


Кабельные вводы

2. Корпус щитового крепления Щ2



Вырез в лицевой панели щита



Приложение №2. Схемы подключения прибора УМТ

1. Схема подключения прибора УМТ1.

2. Схема подключения прибора УМТ2.

