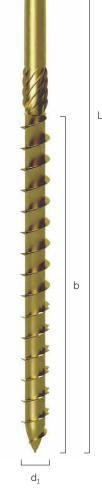
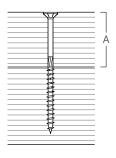
SCH-H

ШУРУП С ЖЁЛТЫМ ЦИНКОВАНИЕМ ДЛЯ ДЕРЕВА С ПОТАЙНОЙ ГОЛОВКОЙ

- Эквивалентные SNK эксплуатационные характеристики по доступной цене
- Увеличенная длина резьбы (60%), что обеспечивает отличное сочленение и универсальность использования
- Специальный самонарезающий наконечник с зубчатой резьбой (наконечник SAW) разрезает древесные волокна, облегчая первоначальное сцепление и последующее проникновение
- Желтая гальваническая оцинковка с полным отсутствием шестивалентного хрома



МАТЕРИАЛ: углеродистая сталь желтой гальванической оцинковкой

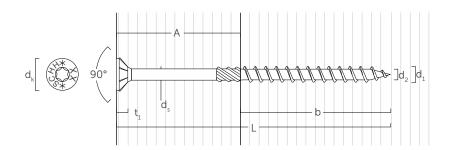


d ₁	d _K	APT. N°	L	b	А	шт.
[MM]	[MM]		[MM]	[MM]	[MM]	
		SCHH440	40	24	16	500
		SCHH450	50	30	20	200
4 TX 20	8,00	SCHH460	60	35	25	200
		SCHH470	70	40	30	200
		SCHH480	80	40	40	200
		SCHH4540	40	24	13	200
		SCHH4550	50	30	20	200
4,5 TX 20	9,00	SCHH4560	60	35	25	200
		SCHH4570	70	40	30	200
		SCHH4580	80	40	40	200
	10,00	SCHH540	40	24	10	200
		SCHH550	50	30	20	200
		SCHH560	60	35	25	200
5		SCHH570	70	40	30	100
TX 25		SCHH580	80	50	30	100
		SCHH590	90	55	35	100
		SCHH5100	100	60	40	100
		SCHH5120	120	60	60	100
		SCHH660	60	35	24	100
		SCHH680	80	50	30	100
6 TX 30	12,00	SCHH6100	100	60	40	100
17.00		SCHH6120	120	75	45	100
		SCHH6140	140	80	60	100

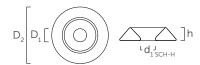
А максимальная толщина прикрепляемой плиты

◁
Π
()

d ₁ [мм]	d _К [мм]	APT. N°	L [мм]	b [мм]	А [мм]	шт.
		SCHH6160	160	90	70	100
		SCHH6180	180	100	80	100
		SCHH6200	200	100	100	100
6		SCHH6220	220	100	120	100
TX 30	12,00	SCHH6240	240	100	140	100
		SCHH6260	260	100	160	100
		SCHH6280	280	100	180	100
		SCHH6300	300	100	200	100
		SCHH8100	100	60	40	100
		SCHH8120	120	80	40	100
		SCHH8140	140	80	60	100
		SCHH8160	160	90	70	100
		SCHH8180	180	90	90	100
		SCHH8200	200	100	100	100
8		SCHH8220	220	100	120	100
TX 30	14,50	SCHH8240	240	100	140	100
		SCHH8260	260	100	160	100
		SCHH8280	280	100	180	100
		SCHH8300	300	100	200	100
		SCHH8320	320	100	220	100
		SCHH8340	340	100	240	100
		SCHH8360	360	100	260	100



SUS-H


d _{1 SCH-H}	APT. N°	D ₂	h	шт.
[MM]		[MM]	[MM]	
6	SUS6H	20	4	100
8	SUS8H	25	5	50

ГЕОМЕТРИЯ И МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

d ₁	[мм]	4	4,5	5	6	8
d_K	[MM]	8	9	10	12	14,5
d_2	[MM]	2,55	2,80	3,40	3,95	5,40
d_S	[MM]	2,75	3,15	3,65	4,30	5,80
t ₁	[MM]	2,80	2,80	3,10	4,50	4,50
d_V	[MM]	2,5	3,0	3,0	4,0	5,0
$M_{y,k}$	[Нм]	3,00	3,80	6,00	10,00	20,50
$f_{ax,k}$	[H/мм ²]	12,0	12,0	12,0	12,0	12,0
f _{head,k}	[H/мм²]	12,5	13,0	13,0	13,0	13,0
f _{tens,k}	[ĸH]	5,0	6,0	8,0	12,0	19,0
	$\begin{array}{c} d_{K} \\ d_{2} \\ d_{S} \\ t_{1} \\ d_{V} \\ M_{y,k} \\ f_{ax,k} \\ \end{array}$	d _K [MM] d ₂ [MM] d ₃ [MM] t ₁ [MM] d _V [MM] M _{y,k} [HM] f _{ax,k} [H/MM ²]	d _K [MM] 8 d ₂ [MM] 2,55 d _S [MM] 2,75 t ₁ [MM] 2,80 d _V [MM] 2,5 M _{y,k} [HM] 3,00 f _{ax,k} [H/MM²] 12,0 f _{head,k} [H/MM²] 12,5	d _K [MM] 8 9 d ₂ [MM] 2,55 2,80 d _S [MM] 2,75 3,15 t ₁ [MM] 2,80 2,80 d _V [MM] 2,5 3,0 M _{y,k} [HM] 3,00 3,80 f _{ax,k} [H/MM²] 12,0 12,0 f _{head,k} [H/MM²] 12,5 13,0	d _K [MM] 8 9 10 d ₂ [MM] 2,55 2,80 3,40 d _S [MM] 2,75 3,15 3,65 t ₁ [MM] 2,80 2,80 3,10 d _V [MM] 2,5 3,0 3,0 M _{y,k} [HM] 3,00 3,80 6,00 f _{ax,k} [H/MM²] 12,0 12,0 12,0 f _{head,k} [H/MM²] 12,5 13,0 13,0	d _k [MM] 8 9 10 12 d ₂ [MM] 2,55 2,80 3,40 3,95 d _S [MM] 2,75 3,15 3,65 4,30 t ₁ [MM] 2,80 2,80 3,10 4,50 d _V [MM] 2,5 3,0 3,0 4,0 M _{y,k} [HM] 3,00 3,80 6,00 10,00 f _{ax,k} [H/MM²] 12,0 12,0 12,0 12,0 f _{head,k} [H/MM²] 12,5 13,0 13,0 13,0

 $^{(1)}$ Предварительное отверстие для хвойных пород дерева (softwood). $^{(2)}$ Принятая плотность ρ_a = 350 кг/м³.

номинальный диаметр шурупа	d ₁	[MM]	6	8
внутренний диаметр	D ₁	[MM]	7,5	8,5
внешний диаметр	D_2	[MM]	20,0	25,0
высота	h	[MM]	4,5	5,5

СТАТИЧЕСКИЕ ВЕЛИЧИНЫ

				пилы	РАСТЯЖЕНИЕ		
геометрия				дерево-дерево	выдергивание полнонарез- ного ⁽¹⁾ погружение головки ⁽²⁾		погружение головки с шайбой ⁽²⁾
			TYT				
d ₁	L	b	А	R _{V,k}	R _{ax,k}	$R_{head,k}$	$R_{head,k}$
[MM]	[MM]	[MM]	[MM]	[ĸH]	[ĸH]	[ĸH]	[ĸH]
	40	24	16	0,75	1,24	0,86	-
	50	30	20	0,81	1,55	0,86	-
4	60	35	25	0,90	1,81	0,86	-
	70	40	30	0,93	2,07	0,86	-
	80	40	40	0,93	2,07	0,86	-
	40	24	13	0,86	1,40	1,14	-
	50	30	20	0,95	1,75	1,14	-
4,5	60	35	25	1,04	2,04	1,14	-
	70	40	30	1,12	2,33	1,14	-
	80	40	40	1,12	2,33	1,14	-
	40	24	10	0,78	1,55	1,40	-
	50	30	20	1,18	1,94	1,40	-
	60	35	25	1,27	2,27	1,40	-
5	70	40	30	1,37	2,59	1,40	-
5	80	50	30	1,37	3,24	1,40	-
	90	55	35	1,46	3,56	1,40	-
	100	60	40	1,46	3,89	1,40	-
	120	60	60	1,46	3,89	1,40	-
	60	35	24	1,61	2,72	2,02	5,61
	80	50	30	1,75	3,89	2,02	5,61
	100	60	40	1,98	4,66	2,02	5,61
	120	75	45	2,03	5,83	2,02	5,61
	140	80	60	2,03	6,22	2,02	5,61
	160	90	70	2,03	6,99	2,02	5,61
6	180	100	80	2,03	7,77	2,02	5,61
	200	100	100	2,03	7,77	2,02	5,61
	220	100	120	2,03	7,77	2,02	5,61
	240	100	140	2,03	7,77	2,02	5,61
	260	100	160	2,03	7,77	2,02	5,61
	280	100	180	2,03	7,77	2,02	5,61
	300	100	200	2,03	7,77	2,02	5,61
				1			

ПРИМЕЧАНИЕ

⁽¹⁾ Осевое сопротивление резьбы выдергиванию было рассчитано для случая, когда угол между волокнами и соединительным элементом составляет 90°, а длина глубина ввинчивания равна b.
(2) Сопротивление протаскиванию головки по оси с шайбой и без нее рассчитывалось для деревянных элементов.

СТАТИЧЕСКИЕ ВЕЛИЧИНЫ

ПИЛЫ РАСТЯЖЕНИЕ							
геометрия				дерево-дерево	выдергивание полнонарез- ного ⁽¹⁾ погружение головки ⁽²⁾		погружение головки с шайбой ⁽²⁾
d ₁	L	b	Α	R _{V,k}	R _{ax,k}	$R_{head,k}$	R _{head,k}
[MM]	[MM]	[MM]	[MM]	[ĸH]	[ĸH]	[ĸH]	[ĸH]
	100	60	40	2,75	6,22	2,95	8,77
	120	80	40	2,75	8,29	2,95	8,77
	140	80	60	3,16	8,29	2,95	8,77
	160	90	70	3,16	9,32	2,95	8,77
	180	90	90	3,16	9,32	2,95	8,77
	200	100	100	3,16	10,36	2,95	8,77
	220	100	120	3,16	10,36	2,95	8,77
8	240	100	140	3,16	10,36	2,95	8,77
	260	100	160	3,16	10,36	2,95	8,77
	280	100	180	3,16	10,36	2,95	8,77
	300	100	200	3,16	10,36	2,95	8,77
	320	100	220	3,16	10,36	2,95	8,77
	340	100	240	3,16	10,36	2,95	8,77
	360	100	260	3,16	10,36	2,95	8,77

ПРИМЕЧАНИЕ

- (1) Осевое сопротивление резьбы выдергиванию было рассчитано для случая, когда угол между волокнами и соединительным элементом составляет 90°, а длина глубина ввинчивания равна b.
- (2) Сопротивление протаскиванию головки по оси с шайбой и без нее рассчитывалось для деревянных элементов.

ОСНОВНЫЕ ПРИНЦИПЫ

- Характеристические величины согласно стандарту EN 1995:2014.
- Расчетные значения получены на основании нормативных значений следующим образом:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Коэффициенты γ_M и k_{mod} должны приниматься в соответствии с действующими правилами, примененными для выполнения расчета. Механическая прочность и геометрия шурупа в соответствии с маркировкой СЕ и стандартом EN 14592.

- При расчете учитывается объемная масса деревянных элементов, равный ρ_k = 385 кг/м³.

- Значения были рассчитаны с учетом минимальной длины проникновения со стороны наконечника, равной 6d₁. Определение размеров и контроль деревянных элементов должны производиться отдельно. Характеристическое сопротивление сдвигу рассчитывается для винтов, введенных без предварительного сверления.