Литий-ионный аккумулятор 25.6V50Ah нового поколения Руководство пользователя

Документация конечного пользователя

Ред. 1.0 30 ноября 2022 г.

ПРИМЕЧАНИЕ: Информация, которая содержится в настоящем руководстве, является собственностью компании ООО «СП КОМ» и может быть изменена без предварительного уведомления. Производитель оставляет за собой право вносить изменения в конструкцию изделий или компонентов по мере развития техники и производства.

Ответственность за то, насколько информация, содержащаяся в настоящем документе, пригодна и достаточна для конкретного использования, лежит на покупателе.

Кроме того, каждый пользователь несет ответственность за то, что любое применение аккумуляторов является целесообразным и безопасным, исходя из условий, предполагаемых или возникших в процессе эксплуатации.

Настоящий документ не создает никаких дополнительных обязательств для ООО «СП КОМ» и не представляет собой дополнительных гарантий и заверений.

СОДЕРЖАНИЕ

Руководство пользователя	1
Принципиальная схема	6
Хранение	9
Взаимосвязь между предельными значениями заряда и температурой	9
Последовательные цепи	. 10
Параллельные цепи	. 11
Зарядка аккумуляторов	. 12
Зарядка или выключение	. 13
Светодиодная индикация для G2 и G3	. 14
Коммуникация для G3	. 15
Представление приложения для аккумулятора Bluetooth	. 16
Устранение неисправностей	. 18
Отключение зарядного устройства при использовании постоянного напряжения	. 18
Отсутствующее или низкое напряжение на клеммах	. 18
Ток аккумулятора исчезает при зарядке	. 19

ПРЕДУПРЕЖДЕНИЕ:

Опасность взрыва, поражения электрическим током или пожара

- Аккумулятор может создавать опасность поражения электрическим током, ожогов от тока короткого замыкания большой силы, пожара или взрыва. Соблюдайте надлежащие меры предосторожности.
- Убедитесь, что кабели соответствуют необходимым размерам.
- Обеспечьте строгое соблюдение требований к расстоянию между аккумуляторами.
- Убедитесь, что пространство вокруг аккумуляторов хорошо проветривается и не загрязнено.
- Убедитесь, что рядом с аккумулятором не находятся источники тепла.
- Убедитесь, что винты клемм аккумулятора затянуты (момент затяжки винта М8: 18 Н.м).
- Обязательно используйте инструменты с изоляцией. Избегайте падения инструментов на аккумуляторы или другие электрические детали.
- Никогда не заряжайте замерзший аккумулятор, если в нем нет дополнительных нагревательных элементов.
- При необходимости снятия аккумулятора в первую очередь отсоедините от него заземленную клемму. Убедитесь, что все устройства отключены.

ВАЖНО

- При установке аккумуляторов оставляйте между ними достаточное расстояние.
- При замене используйте аккумуляторы того же типа и в том же количестве.
- Избегайте падений или ударов изделия в процессе установки.
- Не снимайте компоненты аккумулятора. Обслуживание аккумулятора следует поручать квалифицированному специалисту.
- Не подвергайте литий-ионный аккумулятор нагреву свыше 58°С во время работы и свыше 60°С при хранении.
- Не поджигайте и не подвергайте воздействию открытого воздуха.
- Не подключайте последовательно более 2 комплектов литий-ионных аккумуляторов. Неправильная работа приведет к повреждению системы управления питанием (СУП).
- Перед последовательным соединением следует удостовериться в полной зарядке или разрядке одного аккумулятора. Разница в состоянии заряда (SOC) аккумуляторов может привести к тому, что вся группа аккумуляторов не будет нормально заряжаться и разряжаться (уменьшится полезная емкость группы аккумуляторов).
- Перед параллельным подключением лучше убедиться, что разница в напряжении не превышает 0,1 В, чтобы избежать поражения током большой силы.
- Не соединяйте аккумуляторы последовательно при одновременном параллельном соединении.

Литий-ионный аккумулятор Ritar 25.6V50Ah (25,6 B 50 Aч) нового поколения оснащен съемным корпусом и модульной конструкцией, которая способствует сборке на местах.

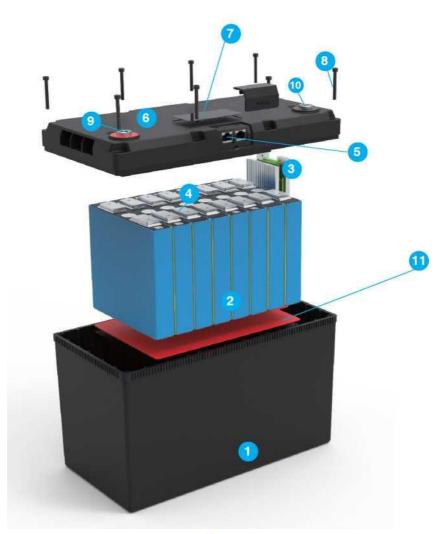
Литий-ионный аккумулятор 25.6V50Ah нового поколения содержит железофосфатные (LiFePO4) элементы и уникальную BMS для обеспечения безопасности, тока большой силы и выдающейся долговечности, с 20-кратным увеличенным сроком службы по сравнению с свинцово-кислотными аккумуляторами. До 70% легче по весу, чем стандартные аккумуляторы, что обеспечивает экономию транспортных затрат. Также имеются различные принадлежности, включающие Bluetooth модули, нагревательные элементы, светодиодные дисплеи и коммуникационные порты. Настоящий документ предназначен для использования всеми, кому необходимо установить и эксплуатировать литий-ионные аккумуляторы 25.6V50Ah нового поколения. Перед началом работы обязательно внимательно изучите настоящее руководство, чтобы выявить все потенциальные риски безопасности.

Прежде чем приступить к работе, пользователю следует ознакомиться со всеми особенностями данного изделия.

Несоблюдение инструкций по установке или использованию данного изделия может привести к повреждению изделия, на которое не распространяется гарантия.

Литий-ионный аккумулятор Ritar 25.6V50Ah нового поколения включает 3 различных типа:

R-LFP25.6V50Ah G1: водонепроницаемость IP65,


- Дополнительные части: Встроенный Bluetooth модуль.

R-LFP25.6V50Ah G2: водонепроницаемость IP65, светодиодный индикатор (SOC, RUN, ALARM) и кнопка ВКЛ./ВЫКЛ.

- Дополнительные части: Встроенный Bluetooth модуль, нагревательный элемент, **R-LFP25.6V50Ah G3**: Светодиодный индикатор (SOC, RUN, ALARM) и кнопка ВКЛ./ВЫКЛ. Коммуникационный порт (RS485, CAN).
- Дополнительные части: Встроенный Bluetooth модуль, нагревательный элемент, внешний Bluetooth модуль (RS485), внешний модуль дисплея (RS485).

Принципиальная схема

- 👩 Корпус аккумулятора ABS+PC
- Призматический элемент LiFePO4 3.2V50Ah, 1P8S
- ОУП- 8S50A
- Оправот по правот по правот по правот по правот по пременения по пре
- бы Коммуникационный порт (RS485, CAN), Только для G3
- 6 Крышка аккумулятора ABS+PC
- Пленка -PC , Отсутствие шелкографии для G1 SOC/RUN/ALM и ВКЛ./ВЫКЛ. для G2, G3

- Крепежные винты, М3*25,
- Положительный полюс аккумулятора, никелированная латунь

Внутренняя резьба М8

- Отрицательный полюс аккумулятора, никелированная латунь Внутренняя резьба М8
- Дополнительный нагревательный элемент для G1, G2, G3

Модель	LFP25.6V50AH G1	LFP25.6V50AH G3				
Элемент и соединение	Призматический 3.2V50Ah, 1P8S					
Номинальное напряжение [В]	25,6					
Номинальная емкость [Ач]	50					
Общая энергия [Втч]	1280					
Макс. ток при заряде [А]	50					
Рекомендуемый ток при заряде [А]	25					
Напряжение при заряде [В]	28,4~29,2					
Макс. ток при разряде [А]	50					
Напряжение в конце разряда [В]	22,4					
Диапазон рабочей температуры	Заряд: 0 ∼ +50°С; Разряд:	-20 ~ +55°C				
диапазон рассочей температуры	С нагревательным элементом: заря	яд/разряд -20~+55°C				
Защита	Превышение заряда, превышение разряда, превышение температуры, низкая					
N(температура, превышение тока, короткое замыкание					
Жизненный цикл	>3000 циклов					
Расчетный срок службы	10 лет					
Коммуникационный порт	/	RS485; CAN				
Светодиодные индикаторы и кнопки	/ SOC, ALM, RUN, ВКЛ./ВЫКЛ.					
Габариты (Ш*Г*В, мм)	330*172*214					
Масса [кг]	11.8					
Влажность при эксплуатации	0∼95% отн. влаж. (без конденсации)					
Класс IP	IP65	IP30				
Возможность параллельной работы	Да, макс. 4 компле	кта				
Возможность последовательной работы	Да, макс. 2 комплекта					
Сертификация - аккумулятор	UN38.3; MSDS					
		Внутренний Bluetooth модуль				
Дополнительные части	Внутренний Bluetooth Внутренний Bluetooth	•				
	модуль модуль Нагревательный элемен	Внешний Bluetooth модуль нт Внешний модуль дисплея				
	на ревательный элемен	RS485-USB-устройство				

Информация о BMS

Сигнал о превышении заряда и защита / Сигнал о п Сигнал о превышении заряда				
	3,55 В (для элемента) 28,0 В (для аккумулятора)			
ащита от превышения заряда	3,65 В (для элемента) 29,6 В (для аккумулятора)			
адержка защиты от превышения заряда	1000 мс			
Размыкание при превышении заряда	3,38 В (для элемента) 27,6 В (для аккумулятора)			
Сигнал о превышении разряда	2,8 В (для элемента) 22,4 В (для аккумулятора)			
ащита от превышения разряда	2,5 В (для элемента) 20 В (для аккумулятора)			
адержка защиты от превышения разряда	1000 мс			
азмыкание при превышении разряда	2,8 В (для элемента) 22,4 В (для аккумулятора)			
сигнал о превышении тока и защита				
Сигнал о превышении тока заряда	52 A			
ащита от превышения тока заряда	55 A			
адержка защиты от превышения тока заряда	15 C			
Размыкание защиты от превышения тока заряда	Автоматическое размыкание через 1 мин и до 3 раз или при разряде			
Сигнал о превышении тока разряда	55 A			
ащита от превышения тока разряда 1	60 A			
адержка защиты от превышения тока разряда 1	15 C			
ащита от превышения тока разряда 2	80 A			
адержка защиты от превышения тока разряда 2	200 мс			
азмыкание защиты от превышения тока разряда	Автоматическое размыкание через 1 мин и до 3 раз или при заряде			
Сигнал о превышении температуры и защита	омр <i>и</i> до			
Сигнал низкой температуры заряда	7°C			
ащита от низкой температуры заряда Размыкание защиты от низкой температуры	0°C			
аряда	5°C			
Сигнал высокой температуры заряда	50°C			
ащита от высокой температуры заряда Зазмыкание защиты от высокой температуры	55°C			
аряда	45°C			
Сигнал низкой температуры разряда	-10°C			
ащита от низкой температуры разряда Размыкание защиты от низкой температуры	-20°C			
азряда	-17°C			
Сигнал высокой температуры разряда	55°C			
ащита от высокой температуры разряда Размыкание защиты от высокой температуры азряда	60°C 50°C			
ащита от короткого замыкания				
ремя задержки защиты от тока короткого	1500 мкс Нагрузка при размыкании			
амыкания Летод размыкания при токе короткого замыкания	нагрузка при размыкании			
Летод размыкания при токе короткого замыкания ————————————————————————————————————	пагрузка при размыкапии			
	/ Температура элемента < 0°C и зарядного			

Хранение

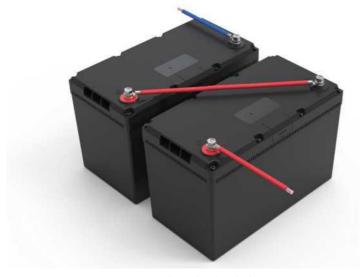
Литий-ионный аккумулятор 25.6V50Ah можно хранить в среде с температурой от -20°C до +55°C и относительной влажностью от 10% до 90% без конденсации.

Для длительного хранения при температуре 25°C заряжайте аккумулятор каждые полгода.

При температуре выше 40°C заряжайте аккумулятор ежеквартально.

Не храните литий-ионный аккумулятор при температуре выше 60°C.

Взаимосвязь между предельными значениями заряда и температурой


В силу химического состава литий-ионных элементов, они не могут принимать такой большой ток заряда при низких температурах без риска постоянной потери емкости. По мере повышения температуры элементов в процессе заряда они могут постепенно принимать более высокие токи. Для поддержания оптимальной производительности и долговечности литий-ионного аккумулятора рекомендуется соблюдать следующие пределы заряда в зависимости от температуры окружающей среды.

Температура (°C)	Максимальный ток заряда
-20	Запрет зарядки
-10	Запрет зарядки
0	0,1 Кл
10	Рекомендуемый ток заряда
20	Максимальный ток непрерывного заряда
35	Рекомендуемый ток заряда
45	0,2 Кл
>55	Запрет зарядки

Таблица 1 Скорость заряда в зависимости от температуры

Последовательные цепи

Аккумуляторы можно объединять в последовательные цепи для достижения более высокого рабочего напряжения путем соединения положительной клеммы одного аккумулятора с отрицательной клеммой следующего аккумулятора. Максимальное количество литий-ионных аккумуляторов 12,8 В, которые можно соединить последовательно, — два (2). Ниже на рисунке 2 показаны два литий-ионных аккумулятора 25,6 В, соединенных последовательно, для конфигурации 2S1P.

2шт 25.6v50ah

Два последовательно соединенных аккумулятора: 2 x 25,6 B = 51,2 B (номинальное) для устройств на 48 B.

ПРЕДУПРЕЖДЕНИЕ

Рисунок 2. Последовательное подключение аккумуляторов (конфигурация 2S1P)

- Несоблюдение следующих инструкций по технике безопасности может привести к травмам или повреждению оборудования!
- Не подключайте последовательно более четырех аккумуляторов. При последовательном подключении более двух аккумуляторов превышается предел напряжения BMS.
- Не допускайте короткого замыкания литий-ионного аккумулятора
- Не соединяйте последовательно аккумуляторы разных партий, разных типов, старые и новые аккумуляторы.
- Перед последовательным соединением убедитесь в соответствии аккумуляторов друг другу.
- При последовательном соединении, если один из аккумуляторов заряжен полностью (100% SOC), второй аккумулятор больше не будет заряжаться, это может привести к тому, что SOC некоторых аккумуляторов не покажет 100%, это не влияет на производительность аккумулятора.

Параллельные цепи

Вы можете объединить аккумуляторы в параллельные цепи для достижения более высокой рабочей энергии, соединив клеммы соседних аккумуляторов с одинаковой полярностью. Чтобы объединить аккумуляторы в параллельную цепь, подключите все провода с одинаковой полярностью на соседних аккумуляторах к клеммной колодке соответствующего размера для вашего применения.

На рисунке 3 приведен пример четырех литий-ионных аккумуляторов 25,6 В, соединенных вместе в конфигурации 4Р. Максимальное количество последовательных аккумуляторов на 25,6 В, которые можно соединить параллельно, — четыре.

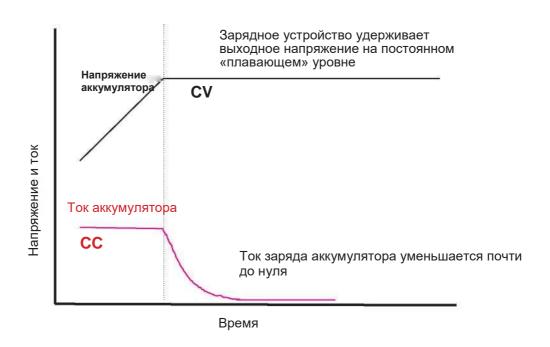
4шт x 25.6v50ah

Рисунок 3 Пример конфигурации 4Р

ПРЕДУПРЕЖДЕНИЕ

- Не подключайте параллельно аккумуляторы разных партий, разных типов, старые и новые аккумуляторы.
- Перед параллельным подключением убедитесь, что разница в напряжении аккумуляторов составляет менее 100 мВ, чтобы избежать высокого импульсного тока.
- Убедитесь, что каждый аккумулятор обладает током заряда/разряда 3А.
- Параллельное подключение может только продлить время работы, но не может увеличить ток заряда или разряда.

Зарядка аккумуляторов

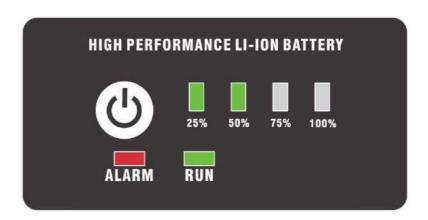

Литий-ионный аккумулятор 25,6 В совместим с обычными зарядными устройствами для свинцовокислотных аккумуляторов 24 В.

Зарядные устройства, которые требуют определения напряжения на клеммах аккумулятора для зарядки, могут не вывести литий-ионный аккумулятор из состояния защиты от пониженного напряжения. Зарядные устройства с постоянным напряжением (CV) могут привести к резкому увеличению тока из-за низкого сопротивления элементов, прерывая заряд. Если зарядное устройство отключилось, перезагрузите его и продолжайте зарядку в нормальном режиме.

Настоятельно рекомендуется использовать зарядные устройства с постоянным током (СС).

Для зарядки одного аккумулятора 25,6 В максимальное напряжение заряда составляет 29,2 В, а максимальный ток заряда указан в Таблице 1. Любой бросок пускового тока может вызвать перегрузку по току или срабатывание защиты от короткого замыкания.

Как только будет достигнуто напряжение в конце заряда, подайте постоянное напряжение, удерживая его до тех пор, пока ток не снизится почти до нуля. Это зарядит элементы до 100% состояния заряда (SOC). Для наглядности смотрите рисунок ниже.


Напряжение и ток аккумулятора во время зарядки

Зарядка или выключение

Литий-ионный аккумулятор 25.6V50Ah, если в течение 24 часов не было заряда или разряда, переходит в спящий режим для экономии энергии. ОСV (>20 В) все еще может быть измерено, и любая операция заряда или разряда активирует аккумулятор.

Если аккумулятор был защищен от превышения разряда, BMS перейдет в спящий режим через 5 минут. В этом состоянии отсутствует OCV. Только процесс заряда сможет активировать аккумулятор.

Для серий G2 и G3 также поддерживается нажатие кнопки ВКЛ./ВЫКЛ. в течение 6 секунд для активации или выключения аккумулятора.

Светодиодная индикация для G2 и G3

	Номинальное значение	RUN	ALM	SOC				
Состояние	Предупреждение Защита	0			0	<u> </u>	<u> </u>	Описание
Выключение	Спящий режим	выкл.	выкл.	ВЫКЛ.	выкл.	выкл.	выкл.	
Режим	Номинал.	Вспышка 1	выкл.	Контроль емкости модуля			Режим ожидания Модуль под низким	
ожидания	Предупреждение	Вспышка 1	Вспышка 3					напряжением
	Номинал.	ВКЛ.	ВЫКЛ.	V				
	Предупреждение	ВКЛ.	Вспышка 3	K	Контроль емкости модуля			
Заряд	Защита от превышения заряда	ВКЛ.	выкл.	ВКЛ.	ВКЛ.	ВКЛ.	ВКЛ.	Светодиод переходит в режим ожидания при отсутствии питания
	Температура, перегрузка по току, защита от сбоев	выкл.	выкл.	выкл.	выкл.	выкл.	выкл.	Остановка заряда
	Номинал.	ВКЛ.	выкл.	V	Контроль емкости модуля			
	Предупреждение	ВКЛ.	Вспышка 3	K				
Разряд	Защита от низкого напряжения	выкл.	выкл.	выкл.	выкл.	выкл.	выкл.	Остановка разряда
	Защита от перегрева, перегрузки по току, короткого замыкания, сбоя	выкл.	ВКЛ.	выкл. выкл. выкл. выкл.	Остановка разряда			
Неисправнос ть		выкл.	ВКЛ.	выкл.	выкл.	выкл.	выкл.	Остановка заряда и разряда

Примечание: Вспышка 1: горит 0,25 с / выкл. 3,75 с Вспышка 2: горит 0,5 с / выкл. 0,5 с Вспышка 3: горит 0,5 с / выкл. 1,5 с

Коммуникация для G3

В этой главе в основном представлена функция коммуникации для R-LFP25.6V50Ah G3.

BBEPX
Описание
LED -
O/F/LED+
O/F
CAN H
CAN L
СОМС
RS485-A
RS485-B

	ВНИ3
PIN	Описание
1	/
2	SWB
3	SWA
4	CAN H
5	CAN L
6	COMG
7	RS485-A
8	RS485-B

Представление приложения для аккумулятора Bluetooth

В данной главе мы представим приложение для аккумулятора Bluetooth.

Для устройства с IOS, можно найти Bluetooth Li в App Store.

Для устройства Android, можно отсканировать приведенный ниже QR-код для загрузки приложения.

Приложение для Android

Bluetooth ID

Состояние заряда

Напряжение аккумулятора

Ток аккумулятора

Заряд положительный, разряд отрицательный

Номинальная емкость аккумулятора Температура аккумулятора

> Время цикла

Устранение неисправностей

Литий-ионные аккумуляторы — это чрезвычайно надежные аккумуляторы, обеспечивающие больший срок службы, чем аналогичные свинцово-кислотные аккумуляторы на 12 В. Несмотря на высокую надежность литий-ионных аккумуляторов на 12,8 В/25,6 В, вы можете столкнуться с ситуациями, когда аккумулятор работает не так, как ожидалось. Такие ситуации обычно являются результатом неправильного использования, неправильного обращения или неоптимальных условий эксплуатации или хранения. В этой части подробно описаны возможные проблемы, с которыми вы можете столкнуться при использовании литий-ионных аккумуляторов на 12,8/25,6 В, а также соответствующие процедуры устранения неисправностей.

Отключение зарядного устройства при использовании постоянного напряжения

Проблема:

Зарядное устройство CV отключается при заряде аккумуляторов. Это происходит из-за низкого сопротивления (глубокий разряд) аккумулятора, создающего скачок тока.

Решение:

Сбросьте зарядное устройство и повторите попытку.

Отсутствующее или низкое напряжение на клеммах

Проблема:

Проверка напряжения на клеммах с помощью мультиметра показывает, что напряжение на клеммах низкое (<10 B).

Возможными причинами этой проблемы являются:

Напряжение на одном из элементов батареи упало ниже 2,5 В, что заставило микропроцессор включить защиту от низкого напряжения.

SOC аккумулятора упал ниже 5% в результате длительного простоя или интенсивного использования, что привело к включению защиты от пониженного напряжения.

Аккумулятор перегрелся (>60°C), в результате чего микропроцессор включил защиту от перегрева.

Решение:

Для устранения ситуаций, когда напряжение на клеммах отсутствует или низкое:

- 1. Дайте аккумулятору остыть, а затем повторно проверьте напряжение на клеммах.
- 2. Подключите аккумулятор к зарядному устройству, чтобы привести аккумулятор в рабочее состояние и восстановить напряжение на клеммах. (Для активации можно использовать фотоэлектрическую панель <=30 В).

(Для активации сильно разрядившегося аккумулятора можно также использовать аккумулятор VRLA на 12 B).

3. Если напряжение на аккумуляторе ниже 7 В, BMS больше не будет активирована. Поэтому не допускайте глубокого разряда аккумулятора и своевременно заряжайте.

Ток аккумулятора исчезает при зарядке

Проблема:

Ток аккумулятора исчезает при зарядке. Возможными причинами этой проблемы являются:

Аккумулятор перегрелся, сработала защита от перегрева.

Слишком высокое напряжение зарядного устройства.

Решение:

Для устранения ситуации, когда ток пропадает при зарядке:

- 1 Дайте батарее остыть.
- 2 Уменьшите напряжение зарядного устройства до 14,2~14,6 В.