

ТЕСТЕР КИСЛОТНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ НАПРЯЖЕНИЕМ 12 В

Благодарим вас за доверие к продукции нашей компании

© МЕГЕОН. Все права защищены.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ, ОСОБЕНОСТИ	3
СОВЕТЫ ПО БЕЗОПАСНОСТИ	4
ПЕРЕД ПЕРВЫМ ИСПОЛЬЗОВАНИЕМ	5
ВНЕШНИЙ ВИД И ОРГАНЫ УПРАВЛЕНИЯ	5
дисплей	6
инструкция по эксплуатации	6
ПРОВЕДЕНИЕ ИСПЫТАНИЙ И ИЗМЕРЕНИЙ	7
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	15
ОБЩИЕ ХАРАКТЕРИСТИКИ	16
СПРАВОЧНАЯ ИНФОРМАЦИЯ	17
МЕРЫ ПРЕДОСТОРОЖНОСТИ	18
УХОД И ХРАНЕНИЕ	19
ГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ	19
КОМПЛЕКТ ПОСТАВКИ	19

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

ОБРАТИТЕ ОСОБОЕ ВНИМАНИЕ

СТАНДАРТЫ

GB4793.1, IEEE1118-1996 IEC/EN61010-1 CAT III 600V

СПЕЦИАЛЬНОЕ ЗАЯВЛЕНИЕ

собой право без специального Компания оставляет уведомления. HP ихудшая потребительских свойств прибора характеристики, дизайн, технические комплектацию, изменить: руководство. Данное руководство содержит сообщения. информацию οб использовании, предупреждающие правила техники безопасности и меры предосторожности функций использовании соответствующих измерительных прибора и актуально на момент публикации

ВВЕДЕНИЕ

MFCFOH 81012 это портативный тестер кислотных аккумуляторных батарей напряжением 12В. Тестер питается от требует проверяемого аккумулятора и не дополнительных источников питания. Тестер измеряет: внутреннее сопротивление батареи согласно методике IEEE 1118-1996, напряжение батареи и на основе этих данных вычисляет оставшийся ресурс батареи. Кроме этого тестер позволяет фиксировать пиковые значения напряжения на батарее в режиме пусковых токов, при работе различных нагрузок и проверять систему зарядки.

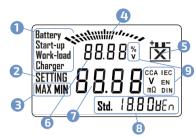
ОСОБЕНОСТИ

- 🏮 Проверка 12 вольтовых кислотных аккумуляторных батарей
- Измерение внутреннего сопротивления и напряжения батареи
 - 🖢 Вычисление остаточной резервной ёмкости (ресурса батареи)
- Измерение и фиксация минимального значения напряжения на батарее при проверке систем автомобиля
- Измерение и фиксация минимального значения напряжения на батарее при запуске двигателя автомобиля
- Измерение и фиксация минимального и максимального напряжения на батарее при зарядке
- Может работать с различными единицами измерения холодного пускогого тока батарей (ССА, IEC, DIN, EN)
- Питание от проверяемой батареи

СОВЕТЫ ПО БЕЗОПАСНОСТИ

- Конструкция прибора соответствует всем необходимым требованиям, но по соображениям безопасности для исключения случайного травмирования, повреждения других приборов и оборудования автомобиля, а также правильного и безопасного использования прибора соблюдайте следующие правила:
- Свинцово-кислотный аккумулятор объект проверки прибора, содержит серную кислоту, во избежание химических ожогов будьте предельно внимательны.
- Во избежание повреждения прибора или оборудования автомобиля подключайте щупы прибора только к клеммам аккумулятора. Соблюдайте порядок подключения и отключения измерительных щупов. Не отключайте аккумулятор от бортовой сети во время работы двигателя. Не пытайтесь измерить прибором напряжение в любых других цепях автомобиля
- Запрещается подключать прибор к автомобилю, напряжение бортовой сети которого больше 12 В это вызовет повреждение прибора.
- Не проводите измерения во взрывоопасной среде, т.к. при подключении и отключении прибора возможно искрообразование, что может привести к взрыву. Следует помнить, что кислотный аккумулятор во время заряда выделяет водород, который смешиваясь с воздухом, в определённых концентрациях образует взрывоопасную смесь.
- Будьте внимательны при подключении прибора к аккумулятору несоблюдение полярности может вывести прибор из строя.
- Используйте прибор только в качестве тестера аккумуляторных батарей
- Если в прибор попала влага или жидкость немедленно отключите прибор от бортовой сети или аккумулятора и обратитесь к дилеру или в сервисный центр.
- Если в приборе образовался конденсат (что может быть вызвано резкой сменой температуры окружающего воздуха) необходимо не включая прибор, выдержать его при комнатной температуре без упаковки не менее 3 часов.
- Защитите прибор от попадания внутрь корпуса влаги, пыли, высокоактивных растворителей, и газов вызывающих коррозию.
 - Поддерживайте поверхность прибора в чистом и сухом виде.

- Не используйте прибор, если есть сомнение в его правильном функционировании обратитесь к дилеру или в сервисный центр
- Эксплуатация с повреждённым корпусом, проводами или зажимами строго запрещена. Время от времени проверяйте корпус прибора на предмет трещин, а измерительные провода и зажимы на предмет повреждения изоляции. В случае обнаружения этих и им подобных дефектов обратитесь к дилеру или в сервисный центр
- Не разбирайте, и не пытайтесь ремонтировать прибор самостоятельно или вносить изменения в его конструкцию это приведёт к лишению гарантии и возможной неработоспособности прибора.


ПЕРЕД ПЕРВЫМ ИСПОЛЬЗОВАНИЕМ

- После приобретения тестера аккумуляторов МЕГЕОН 81012, рекомендуем проверить его, выполнив следующие шаги:
- Проверьте тестер и упаковку на отсутствие механических и других видов повреждений, вызванных транспортировкой.
- Если упаковка повреждена, сохраните её до тех пор, пока тестер пройдёт полную проверку.
- Убедитесь, что корпус тестера не имеет трещин, сколов, вмятин, а провода и зажимы не повреждены.
 - Проверьте комплектацию тестера.
- Если обнаружены дефекты и недостатки, перечисленные выше или комплектация не полная верните тестер продавцу.
- Пожалуйста, внимательно прочитайте настоящее руководство перед первым использованием и храните его вместе с тестером для быстрого разрешения возникающих вопросов во время работы.

ВНЕШНИЙ ВИД И ОРГАНЫ УПРАВЛЕНИЯ Дисплей Кнопка «▲» Кнопка «ESC» Кнопка «ENTER» Красный зажим (+) Чёрный зажим (-)

ДИСПЛЕЙ

- 1 Режимы работы
- Установка параметров
- В Мин. и макс. значения
- Динамическая шкала
- Поле рекомендаций
- Вспомогательное поле
- Основное поле
- В Дополнительное поле

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

Используемые сокращения, параметры и стандарты

RC - Reserve Capacity - резервная ёмкость (измеряется в минутах). Параметр аккумуляторной батареи указывающий сколько времени полностью заряженная батарея будет разряжаться током 25 A, до напряжения $10.5\,\mathrm{B}$ при $27\,^\circ\mathrm{C}$.

CCA - Cold Cranking Ampere - холодный пусковой ток. Измеряется в амперах и отражает стартерные характеристики аккумуляторной батареи. Существует несколько различных методик измерения тока холодной прокрутки (SAE, DIN, IEC, EN, JIS, ГОСТ) и при его сравнении у разных аккумуляторных батарей нужно убедиться в том, что он указан по одному и тому же стандарту.

Параметр		Стандарты измерения холодного пускового тока									
		SAE ¹	DIN ²	IN ² IEC ¹ EN ³		JIS ⁴	ΓΟCT⁵				
To	емпература	-18 °C	-18 °C	-18 °C	-18 °C	-15 °C	-18 °C				
	Минимальное напряжение		9 B	8,4 B	7,5 B	6 B	7,5 B / 7,2 B				
І тест	Разрядный ток	100%	100%	100%	100%	300 A	100%				
	Время	30 сек	30 сек	60 сек	10 сек	измеря- ется	10сек/30сек				
	Минимальное напряжение		6 B		7,5 B		6 B				
II тест	Разрядный ток		100%		60%		60%				
	Время		150 сек		73 сек		измеряется				

① Напряжение на батарее по истечении указанного времени, при указанном токе не должно быть ниже, указанного значения

²⁾ Батарея разряжается фиксированным током, при этом через 30 сек напряжение не

должно быть менее 9 В, а через 150 сек от начала теста не менее 6 В

- 3 Между тестами перерыв 10 сек, в обоих тестах напряжение на батарее не должно быть меньше 7.5 В
- 4 Измерению подлежит время за которое батарея разрядится указанным током до 6 В
- (5) Российский ГОСТ подразумевает в 1-м тесте разряд указанным током в течении 30 сек, при этом на 10-й секунде напряжение не должно быть меньше 7,5 В, а на 30-й секунде не менее 7,2 В. После этого нагрузка снимается, через 20 секунд начинается 2-й тест, который нагрузкой 60% от номинала разряжает батарею до 6 В, при этом измеряется время. Испытания для холодного климата проводятся аналогично, но при 29 °С.
 - SAE Американский промышленный стандарт
 - **DIN** Немецкий промышленный стандарт
 - IEC Международная электротехническая комиссия
 - EN / ETN Европейский стандарт
 - JIS Японский промышленный стандарт
 - ГОСТ стандарт Российской Федерации
- **CA** Cranking Ampere пусковой ток. Параметр аналогичен **CCA**, только измеряется при 0 °C. Если на батарее, указаны оба параметра, то **CCA** будет значительно ниже.
- **АН** Ampere Hour ампер-час. Емкость в ампер-часах это объем электричества, которое батарея отдаст в течение 20 часов до того момента, когда напряжение на ней будет составлять 10,5 В.

Например, батарея емкостью 60 A/ч - должна отдать ток силой 3A в течение 20 часов.

ПРОВЕДЕНИЕ ИСПЫТАНИЙ И ИЗМЕРЕНИЙ

Тест остаточного ресурса «FUN1» - для этого необходимо:

ВАЖНО!!! Если двигатель автомобиля работает – начинать с пункта 1, если только что заглушен с пункта 2, если не работает более 10 минут с пункта 3.

- Заглушите двигатель.
- На 1...2 минуты включите ближний свет.
- Отключите плюсовую клемму аккумулятора от бортовой сети автомобиля.
- \bigcirc Подключить прибор к аккумулятору, соблюдая полярность (красный зажим к «⊕», чёрный к «⊕»), для обеспечения нормального контакта рекомендуется повернуть зажимы в зажатом состоянии на несколько градусов для снятия окислов с клемм аккумулятора.

Б Прибор включится, на дисплее появится окно выбора режимов по умолчанию (FUN1) рис.1

Нажмите кнопку «ENTER» - дисплей изменится на режим выбора стандарта, по умолчанию (ССА) рис2

В зависимости от того в каком стандарте на батарее указан «Холодный пусковой ток» кнопками « \P » и « \clubsuit » выберите необходимый (ССА, IEC, EN, DIN), если батарея маркирована в стандарте «JIS» - необходимо с помощью прилагающийся таблицы из маркировки JIS получить значение в единицах ССА. Если стандарт не указан или неизвестен выберите ССА, т.е. реальное оставшееся значение в (A) и нажмите «ENTER».

(6) - при выборе ССА прибор покажет реальное значение остаточного ресурса холодного пускового тока в амперах (A).

Реальную оставшуюся резервную ёмкость в % прибор при этом покажет с ошибкой. Резервная ёмкость батареи при этом может быть больше или меньше в зависимости от технологии по которой батарея изготовлена и от стандарта, по которому она маркирована.

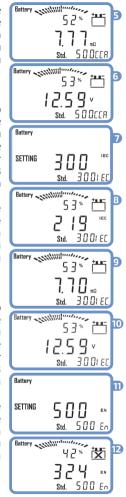
ССА (диапазон установки 100 ... 1700А, что примерно соответствует ёмкости 12 ... 210 А/ч)

 При выборе ССА на дисплее появится окно рис.3 кнопками «▼» и «▲» установите

Battery

значение ССА указанное на батарее или из таблицы, (если значение ССА неизвестно - установите примерное значение из расчёта 1 А/ч ёмкости батареи приблизительно равен 8 ССА) и нажмите «ENTER».

- Прибор начнёт измерение параметров батареи, при этом будет раздаваться звуковой сигнал.
- Через 1...3 секунды по окончанию измерения на дисплее появятся результаты рис 4.
- Если начальное значение ССА было указано примерно, то результат вычисления остаточной резервной ёмкости будет примерным.


Нажмите кнопку «▼» на дисплее отобразится внутреннее сопротивление батареи рис.5, нажмите кнопку ещё раз, на дисплее отобразится напряжение батареи рис.6. Нажав ещё раз вернётесь на экран результатов рис.4

IEC (диапазон установки 100 ... 1000A)

- При выборе IEC на дисплее появится окно рис.7 кнопками «▼» и «▲» установите значение IEC указанное на батарее, и нажмите «ENTER». Прибор начнёт измерение параметров батареи, при этом будет раздаваться звуковой сигнал. Через 1...3 секунды по окончанию измерения на дисплее появятся результаты. рис.8.
- Нажмите кнопку «▼» на дисплее отобразится внутреннее сопротивление батареи рис.9, нажмите кнопку ещё раз, на дисплее отобразится напряжение батареи рис.10. Нажав ещё раз вернётесь на экран результатов рис.8

EN (диапазон установки 100 ... 1700A)

- При выборе EN на дисплее появится окно «▼» и «▲» установите рис.11. кнопками значение EN указанное на батарее, нажмите «ENTER». Прибор начнёт измерение батареи, параметров при этом раздаваться звуковой сигнал. Через секунды ПО окончанию измерения на дисплее появятся результаты. рис.12.
- Нажмите кнопку «▼» на дисплее отобразится внутреннее сопротивление батареи рис.13, нажмите кнопку ещё раз, на дисплее отобразится напряжение батареи рис.14. Нажав ещё раз вернётесь на экран результатов рис.12

DIN (диапазон установки 100 ... 1000A)

- При выборе DIN на дисплее появится окно «▼» и «▲» установите рис.15. кнопками DIN vказанное на батарее. нажмите «ENTER». Прибор начнёт измерение батареи, параметров при звуковой Через раздаваться сигнал. 1...3 секунды по окончанию измерения на дисплее появятся результаты, рис.16.
- Нажмите кнопку «▼» на дисплее отобразится внутреннее сопротивление батареи рис.17, нажмите кнопку ещё раз, на дисплее отобразится напряжение батареи рис.18. Нажав ещё раз вернётесь на экран результатов рис.16.

Чтение результатов теста

остаточного ресурса

- Динамическая шкала в графическом виде дублирует показания вспомогательного поля.
- Во вспомогательном поле отображается оставшаяся резервная ёмкость в %% от номинала.
- В основном поле отображается остаточный пусковой ток в единицах используемого стандарта.
- В дополнительном поле отображается установленное значение пускового тока в используемом стандарте.
- В поле рекомендаций в графическом виде отображается рекомендуемое действие с батареей. рис. 19

В поле рекомендаций 6 вариантов отображения:

- Празряжен, требуется замена (резервная ёмкость ≤ 44%)
- Заряжен, требуется замена (резервная ёмкость ≤ 44%)⁷

- В Разряжен, скоро потребуется замена (45% ≤ резервная ёмкость < 60%)</p>
- ② Заряжен, скоро потребуется замена (45% ≤ резервная ёмкость < 60%)
- Б Разряжен, остаточный ресурс достаточный (резервная ёмкость ≥ 60%)
- б Заряжен, остаточный ресурс достаточный (резервная ёмкость ≥ 60%)
- О Рекомендации по замене носят общий рекомендательный характер, в каждом индивидуальном случае необходимо принимать взвешенное решение с учётом всех влияющих факторов.

Приблизительная оценка заряда батареи:

- 12,80 В 100% (полностью заражена)
- 12,55 B 75%
- 12,30 B 50%
- 12,10 B 25%
- 11,95 В 0% (полностью разряжена)

Примечание: Минимально устанавливаемый ток холодного пуска 100 ССА, что примерно соответствует ёмкости 12,5 А/ч. При проверке аккумуляторов прибор меньшей ёмкости покажет оставшееся значение ССА, но значение резервной ёмкости в процентах будет ошибочным. Для правильного расчёта оставшейся нужно значение резервной ёмкости в %% начального ССА расчёта 1 A/4 аккумулятора. Ero можно взять из аккумулятора примерно равны 8 ССА. Для правильного вычисления нужно пересчитать полученные оставшегося ресурса в %% значения по формуле:

Например: при проверке аккумулятора ёмкостью 7 А/ч было получено значение 49 ССА, Начальное значение ССА берём равным 7 * 8 = 56 ССА. Далее по формуле

$$\frac{49 - (56/0,45)}{(56-(56/0,45))/100} = \frac{49 - 25,2}{(56-25.2)/100} = \frac{23,8}{0,308} = 77,2\%$$

Остаточная резервная ёмкость данного аккумулятора составляет $77.2\,\%$

Следует отметить, что при остаточной резервной ёмкости 45% и менее аккумулятор подлежит замене, так как вследствие повышенного внутреннего сопротивления аккумулятор не сможет обеспечить номинальный ток. При этом на небольших токах нагрузки аккумулятор может нормально функционировать.

Тест батареи в режиме запуска (FUN2)

ВАЖНО!!! Для полноценного проведения теста необходимо, чтобы температура двигателя и батареи была не более 25 °С, если необходимо провести тест холодного пуска – двигатель и батарея должны быть охлаждены до необходимой температуры и выдержаны не менее 12 часов.

- После того, как достигнута необходимая температура для теста:
- Подключите прибор к аккумулятору, соблюдая полярность (красный зажим к « \bigoplus », чёрный к « \bigoplus »), для обеспечения нормального контакта рекомендуется повернуть зажимы в зажатом состоянии на

несколько градусов для снятия окислов с клемм аккумулятора

- Прибор включится, на дисплее появится окно выбора режимов по умолчанию (FUN1) рис. 20
- Нажимая кнопку «▼» выберите режим (FUN2) рис.21 и нажмите «ENTER», прибор готов к тесту запуска. Во время запуска прибор будет измерять напряжение на батарее, и фиксировать минимальное значение во время теста.
- Запустите двигатель в штатном режиме, после запуска прибор отобразит результаты измерения рис.22

Чтение результатов теста запуска

- Динамическая шкала в графическом виде дублирует показания вспомогательного поля.
- Во вспомогательном поле отображается текущее напряжение на батарее
- В основном поле отображается минимальное зафиксированное значение напряжения на батарее во время теста
- В дополнительном поле отображается минимально допустимое напряжение во время теста

Если минимальное напряжение на батарее во время теста было:

- > 10.7 В батарея в хорошем состоянии
- 10,2...10,7 В батарея в нормальном состоянии
- 9.6...10.2 В в скором времени батарею необходимо заменить
- < 9,6 В требуется замена⁸
- В Рекомендации по замене носят общий рекомендательный характер, в каждом индивидуальном случае необходимо принимать взвешенное решение с учётом всех влияющих факторов.

Тест батареи в режиме рабочей нагрузки (FUN3)

ВАЖНО!!! Для проведения теста:

Запустите двигатель и дайте поработать ему на холостых оборотах 3...5 минут

- Подключите прибор к аккумулятору, соблюдая полярность (красный зажим к «⊕», чёрный к «⊖»), для обеспечения нормального контакта рекомендуется повернуть зажимы в зажатом состоянии на несколько градусов для снятия окислов с клемм аккумулятора
- Прибор включится, на дисплее появится окно выбора режимов по умолчанию (FUN1) рис.23
- Нажимая кнопку «▼» выберите режим (FUN3) рис.24 и нажмите «ENTER», прибор готов к тесту в режиме рабочей нагрузки. Во время теста прибор будет измерять напряжение на батарее и фиксировать минимальное значение во время теста

- По очереди включите и оставьте включёнными мощные потребители (электрообогрев стекол, кондиционер, вентилятор отопителя, дальний свет) при отсутствии кондиционера, дождитесь, когда начнёт работать вентилятор охлаждения радиатора.
- Доведите обороты двигателя до 2000...2500 об/мин и удерживайте 1...2 минуты
 - Сбросьте обороты до холостых и дайте поработать 2...3 минуты
- Ещё раз доведите обороты двигателя до 2000...2500 об/мин и удерживайте 1...2 минуты
- Снова сбросьте обороты до холостых и дайте поработать 2...3 минуты
 - Выключите по очереди потребители

• Во время теста прибор зафиксирует минимальное напряжение на батарее рис.25.

Чтение результатов теста рабочей нагрузки

- Динамическая шкала в графическом виде дублирует показания вспомогательного поля.
- Во вспомогательном поле отображается текущее напряжение на батарее
- В основном поле отображается минимальное зафиксированное значение напряжения на батарее во время теста
- В дополнительном поле отображается минимально допустимое напряжение во время теста

 Если минимальное напряжение на батарее во время теста падало ниже 12,80 В – прибор будет подавать звуковой сигнал означающий что тест не пройден.

SETTING

Charger

Charger

MΔX

Charge

SETTING

Fllny

stilling war

1427

1257

Std. 15.008

27

28

29

Тест системы зарядки (FUN4)

ВАЖНО!!! Для проведения теста: Запустите двигатель

- Подключите прибор к аккумулятору, соблюдая полярность (красный зажим к «⊕», чёрный к «⊝»), для обеспечения нормального контакта рекомендуется повернуть зажимы в зажатом состоянии на несколько градусов для снятия окислов с клемм аккумулятора
- Прибор включится, на дисплее появится окно выбора режимов по умолчанию (FUN1) рис. 26
- Нажимая кнопку «▼» выберите режим (FUN4) рис. 27 и нажмите «ENTER», прибор готов к тесту системы зарядки. Во время теста прибор будет измерять напряжение на батарее, и фиксировать одновременно

минимальное и максимальное значения во время теста системы зарядки. Кнопкой «▼» можно переключить отображение максимального или минимального значения

- Доведите обороты двигателя до 3500...4000 об/мин и удерживайте 20...30 секунд
 - Сбросьте обороты до холостых и дайте поработать 1...2 минуты
- Ещё раз доведите обороты двигателя до 3500...4000 об/мин и удерживайте 20...30 секунд
- Снова сбросьте обороты до холостых и дайте поработать 3...5 минут

максимальное напряжение на батарее, рис.28, 29

Чтение результатов теста системы зарядки

- Динамическая шкала в графическом виде дублирует показания вспомогательного поля.
- Во вспомогательном поле отображается текущее напряжение на батарее
- В основном поле отображается минимальное или максимальное зафиксированное значение напряжения на батарее во время теста (фиксируются оба значения – отображается минимальное максимальное) – переключение кнопкой «▼»
 - В дополнительном поле отображается:
- При отображении в основном поле минимального напряжения отображается минимально допустимое напряжение во время теста
- При отображении в основном поле максимального напряжения отображается максимально допустимое напряжение во время теста
- Если минимальное напряжение на батарее во время теста падало ниже 13,30 В или максимальное поднималось выше 15 В – прибор будет подавать звуковой сигнал означающий что тест не пройден.

Внимание!!! Производители аккумуляторных батарей при производстве используют разные материалы и технологии, кроме этого невозможно предусмотреть все нюансы хранения и эксплуатации батареи и возможные неисправности автомобиля - исходя из вышесказанного, верными следует результаты измерений.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Тест остаточного ресурса Значение Параметр Остаточная резервная Вычисление в % от начального значения ёмкость (RC) Косвенное измерение в Амперах Остаточный ток выбранного стандарта холодного пуска (ССА) Измеряется в мОм (миллиомах). Внутреннее сопротивление батареи согласно методике IEEE 1118-1996 Напряжение батареи Измеряется в Вольтах Рекомендации по замене носят общий рекомендательный характер, в каждом Поле рекомендаций индивидуальном случае необходимо принимать взвешенное решение с vчётом всех влияющих факторов.

Тест запуска

Параметр	Значение
Фиксация минимального напряжения на батарее во время запуска	Измеряется в Вольтах

Тест рабочей нагрузки

	Значение	
Фиксация мині на батарее во в	имального напряжения время теста	Измеряется в Вольтах

Тест системы зарядки

Параметр	Значение
Фиксация минимального напряжения на батарее во время теста	Измеряется в Вольтах
Фиксация максимального напряжения на батарее во время теста	Измеряется в Вольтах

ОБЩИЕ ХАРАКТЕРИСТИКИ

Параметр	Значение
Питание	От проверяемой батареи (918 В)
Размеры (с защитой)	210 x 100 x 40 мм
Вес (с защитой)	520 r
Условия эксплуатации ⁹	Температура 050 °C Относительная влажность 2070 %
Условия транспортировки и хранения	Температура -2060 °C Относительная влажность 2080%

Допускается кратковременная эксплуатация при температуре ниже 0 °С, при условии, что непосредственно перед эксплуатацией прибор находился при температуре выше 5°С не менее 2 часов

ТИПОВЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Неисправность	Вероятная причина	Устранение
	Плохой контакт	Убедитесь в наличии хорошего контакта с клеммами аккумулятора
Прибор не	Неправильная полярность подключения	Подключите прибор соблюдая полярность
включается	Аккумулятор очень глубоко разряжен или неисправен, напряжение ниже б В	Зарядите аккумулятор, если он не заряжается, то он физически не исправен.
	Прибор неисправен	Обратитесь в сервисный центр

(10) Справочная информация взята из открытых источников и предоставляется как есть, без какой-либо гарантии соответствия.

ТАБЛИЦА ПЕРЕВОДА МАРКИРОВКИ JIS В ЕДИНИЦЫ ССА

BA	TTERY		CCA		BAT	TERY		CCA		BAT	TERY		CCA	
NEW JIS	OLD JIS		MF	SMF	NEW JIS	OLD JIS		MF	SMF	NEW JIS	OLD JIS		MF	SMF
26A17R		200			46B26R		360			80D23R		580		
26A17L		200			46B26L		360			80D26L		580		
26A19R	12N24-4	200	220	264	46B26RS		360			85B60K		,		500
26A19L	12N24-3	200	220	264	34B19RS	NS40ZAS	270	325	400	85BR60K				500
28A19R	NT50-N24	250			34B19LS	NS40ZALS	270	325	400	95D31R	NX120-7	620	660	850
28A19L	NT50-N24L	250			46B26LS		360			95D31L	NX120-7L	620	660	850
32A19R	NX60-N24	270			48D26R	N50	280	360	420	95E41R	N100	515	640	770
32A19L	NX60-N24L	270			48D26L	N51L	280	360	420	95E41L	N100L	515	640	770
26B17R		200			50D20R		310	380	480	105E40R	N100Z	580	720	880
26B17L		200			50D20L		310	380	480	105E40L	N100ZL	580	720	880
28B17R		245			50D23R	85BR60K	500			105F51R	N100Z	580		
28B17L		245			50D23L	85B60K	500			105F51L	N100ZL	580		
28B19R	NS40S	245			50B24R	NT80-S6	390			115E41R	NS120	650	800	960
28B19L	NS40LS	245			50B24L	NT80-S6L	390			115E41L	NS120L	650	800	960
32B20R	NS40	270			50D26R	50D20R		370		115F51R	N120	650	800	960
32B20L	NS40L	270			50D26L	50D20L		370		115F51L	N120L	650	, 800	960
32C24R	N40	240	325	400	55D23R		355	480	500	130E41R	NX200-10	800		
32C24L	N40L	240	325	400	55D23L		355	480	500	130E41L	NX20010L	800		
34B17R		280			55B24R	NX100-S6	435	420	500	130F51R		~	800	
34B17L		280			55B24L	NX100-S6L	435	420	500	130F51L			800	
34B19R	NS40ZA	270	325	400	55B24RS	NT80-S6S	430	420	500	145F51R	NS150	780	920	
34B19L	NS40ZAL	270	325	400	55B24LS	NT80-S6LS	430	420	500	145F51L	NS150L	780	920	
36B20R	NS40Z	275	300	360	55D26R	N50Z	350	440	525	145G51R	N150	780	900	1100
36B20L	NS40ZL	275	300	360	55D26L	N50ZL	350	440	525	80D26R	NX100-5	580	580	630
36B20RS	NS40ZS	275	300	360	60D23R		520			80D26L	NX110-5L	580	580	630
36B20LS	NS40ZLS	275	30	360	60D23L		520			145G51L	N150L	780	900	1100
36B20R	NX60-N24	330	340	410	65D23R		420	540	580	150F51R	NT200-12	640		
38B20RS	NT60-N24S	330	340	410	65D23L		,420	540	580	150F51L	NT200-12L	640		
38B20L	NX60-24L	330	340	410	65D26R	NS70	415	520	625	165G51R	NS200	395	980	
38B20LS	NX60-24LS	330	340	410	65D26L	NS70L	415	520	625	165G51L	NS200L	935	980	
40B20L		330			65D31R	N70	390	520	625	170F51R	NX250-12	1045		
40B20R		330			65D31R	N70L	390	520	625	170F51L	NC250-12L	1045		
42B20R		330			70D23R	35-60	490	540	580	180G51L	NT250-15L	1090		
42B20L	100	330			70D23L	25-60	490	540	580	180G51L	NT250-15L	1090		
42B20RS		330			75D23R		500	520	580	195G51R	NX300-51	1145		
42B20LS		330			75D23L		500	520	580	195G52L	NX300-51L	1145		
46B24R	NS60	325	360	420	75D26R	F100-5	490			190H52R	N200	925	1100	1300
46B24L	NS60L	352	360	420	75D26L	F100-5L	490			190H52L	N200L	925	1100	1300
46B24RS	NS60S	325	360	420	75D31R	N70Z	,450	540	735	245H52R	NX400-20	1530	1250	
46B24LS	NS60LS	325	360	420	75D31L	N70ZL	450	540	735	245H52L	NX400-20L	1530	150	

Примерное соответствие холодного пускового тока в разных стандартах

DIN 43559 (FOCT 959-91)	EN 60095-1 (FOCT 959-2002)	SAE J537
170	280	300
220	330	350
255	360	400
255	420	450
280	480	500
310	520	550
335	540	600
365	600	650
395	640	700
420	680	750

МЕРЫ ПРЕДОСТОРОЖНОСТИ

Если на экране ничего не появляется, после подключения к батарее – проверьте полярность подключения, к «—» на батарее должен быть подключен красный зажим, а к «—» чёрный зажим. Несмотря на то, что прибор оснащён защитой от неправильного подключения – она не даёт 100% гарантии защиты.

Если напряжение на батарее ниже 6,0 В – прибор не включится.

Данные, используемые в инструкции по эксплуатации, предназначены только для удобства пользователя, чтобы понять, как будет отображаться информация. Во время измерений будут получены конкретные данные измерений.

Справочная информация взята из открытых источников и предоставляется как есть, без какой-либо

гарантии соответствия.

. Защитите прибор от вибрации и ударов, не роняйте его и не кладите его в сумку ВНУТРИ ПРИБОРА НЕТ ЧАСТЕЙ ДЛЯ ОБСЛУЖИВАНИЯ КОНЕЧНЫМ ПОЛЬЗОВАТЕЛЕМ

СРОК СЛУЖБЫ

Срок службы прибора 3 года . Указанный срок службы действителен при соблюдении потребителем требований настоящего руководства.

УХОД И ХРАНЕНИЕ

Не храните прибор в местах, где возможно попадание влаги или пыли внутрь корпуса, мест с высокой концентрацией активных химических веществ в воздухе. Не подвергайте прибор воздействию внешних вибраций, высоких температур (≥60°С), влажности (≥80%) и прямых солнечных лучей. Не протирайте прибор высокоактивными и горючими жидкостями, промасленной ветошью и др. загрязнёнными материалами. Используйте специальные салфетки для бытовой техники. Перед хранением рекомендуется очистить и высушить прибор и приспособления. Недопустимо применение жестких и абразивных материалов для чистки корпуса прибора, используйте мягкую слегка влажную чистую ткань

ГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ

Для получения обслуживания следует предоставить прибор в чистом виде, полной комплектации и следующую информацию:

- Контактная информация;
- Описание неисправности;
- В Модель;
- Серийный номер;
- Документ, подтверждающий покупку (копия);
- Информацию о месте приобретения;
- Полностью заполненный гарантийный талон.

Пожалуйста, обратитесь с указанной выше информацией к дилеру или в компанию «МЕГЕОН». Прибор, отправленный, без всей указанной выше информации будет возвращен клиенту без ремонта

комплект поставки

- 1 Тестер аккумуляторных батарей МЕГЕОН 81012 1 шт.
- Таблица перевода стандартов 1 экз.
- Руководство по эксплуатации 1 экз.
- Гарантийный талон 1 экз.

- WWW.MEGEON-PRIBOR.RU
- +7 (495) 666-20-75

© MFCFOH. Все материалы данного руководства являются объектами авторского права (в том числе дизайн). Запрещается копирование (в том числе физическое копирование), перевод в электронную форму, распространение, перевод на другие языки, любое полное или частичное использование информации или объектов (в T.4. графических), содержащихся письменного руководстве без согласия правообладателя. . Допускается цитирование с обязательной ссылкой на источник.