# РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

## ТОКАРНЫЙ СТАНОК CORMAK

**МО**ДЕЛЬ: TYTAN 500



Характеристики

| TYTAN 500                                                |                                                                                            |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Возможности:                                             |                                                                                            |
| Диаметр обточки над станиной                             | 200 мм                                                                                     |
| Диаметр обточки над суппортом                            | 140 мм                                                                                     |
| Максимальный длина заготовки (расстояние между центрами) | 500 мм                                                                                     |
| Ширина станины                                           | 100 мм                                                                                     |
| Передняя бабка:                                          |                                                                                            |
| Отверстие шпинделя                                       | 21 мм                                                                                      |
| Конус шпинделя                                           | MT3                                                                                        |
| Регулировка скорости шпинделя                            | плавная (инвертор)                                                                         |
| Диапазон скоростей шпинделя                              | 100-2500 об/мин                                                                            |
| Подача:                                                  |                                                                                            |
| Количество метрических резьб                             | 14                                                                                         |
| Диапазон метрической резьбы                              | 0,3 ~ 3 мм/об                                                                              |
| Количество дюймовых резьб                                | 10                                                                                         |
| Английский (дюймовый) диапазон резьбы                    | 10-44 <b>tpi</b>                                                                           |
| Диапазон продольной подачи                               | 0,09; 0,15; 0,2 мм/об                                                                      |
| Поперечная и продольная подачи:                          |                                                                                            |
| Тип поста инструмента                                    | 4-позиционный                                                                              |
| Максимальный ход верхнего суппорта                       | 55 мм                                                                                      |
| Максимальный ход поперечного суппорта                    | 100 мм                                                                                     |
| Максимальный продольный ход                              | 376 мм                                                                                     |
| Задняя бабка:                                            |                                                                                            |
| Ход шпинделя задней бабки                                | 60 мм                                                                                      |
| Конус в шпинделе задней бабки                            | MT2                                                                                        |
| Остальные показатели:                                    |                                                                                            |
| Главный двигатель                                        | 500 Вт                                                                                     |
| Габаритные размеры:                                      |                                                                                            |
| Длина                                                    | 900 мм                                                                                     |
| Ширина                                                   | 390 мм                                                                                     |
| Высота (без/с подставкой)                                | 340/1160 мм                                                                                |
| Вес (с подставкой)                                       | 95 кг                                                                                      |
| Оборудование                                             | 100 мм трехкулачковый патрон, Фиксированные кулачки, левая/правая челюсти, ключи, шестерни |

## ЧЕРТЕЖ ФУНДАМЕНТА

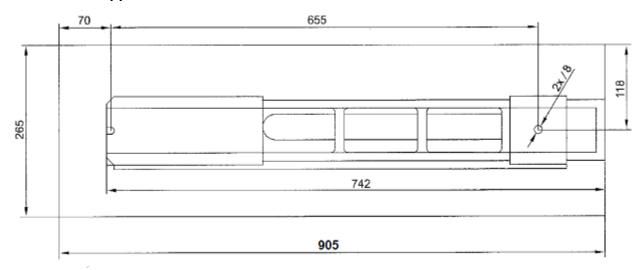



Рис. 2

## ОБЩЕЕ ОПИСАНИЕ

### Токарная станина

Станина изготовлена из высококачественного чугуна. Благодаря сочетанию высоких сторон тисков с прочными поперечными ребрами получается жесткая станина с низким уровнем вибрации. Она объединяет переднюю бабку и привод для установки продольной каретки и ходового винта. Две прецизионно отшлифованные V-образные стороны, усиленные закалкой и шлифовкой, обеспечивают точную направляющую для продольной каретки и задней бабки. Главный двигатель установлен в задней части левого борта станины.

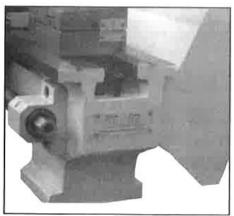



Рис. 3

#### Передняя бабка

Передняя бабка изготовлена из высококачественного чугуна с низким уровнем вибрации. Он крепится к цевью четырьмя винтами. На передней бабке находится главный шпиндель с двумя прецизионными коническими роликоподшипниками и приводной блок.

Главный шпиндель передает крутящий момент в процессе токарной обработки. Он также удерживает заготовки и зажимные приспособления (например, трехкулачковый патрон).

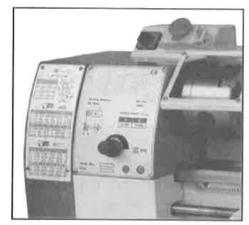



Рис. 4

## Продольный суппорт

Тележка изготовлена из высококачественного чугуна. Скользящие части имеют гладкую поверхность. Они вписываются в V-образное расположение на станине без

каких-либо люфтов. Нижние выдвижные части легко и просто регулируются. Поперечный суппорт установлен на продольной суппорте и передвигается по трапециевидных направляющих. Люфт поперечного хода может быть линейным.

Перемещайте поперечный суппорт с помощью удобно расположенного маховика. На маховике имеется ступенчатое кольцо.

Четырехпозиционный резцедержатель оснащен верхним суппортом и позволяет зажимать четыре инструмента. Ослабьте рычаг на центральном зажиме, чтобы повернуть ИЗ четырех один инструментов в нужное положение.

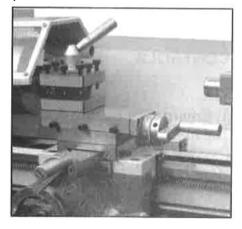



Рис. 5

## Фартук

Фартук крепится на станине. В нем находится полугайка с соединительным рычагом для автоматической подачи. Линейные образцы с полугайкой можно регулировать снаружи. Стойка, установленная на станине, и шестерня, поддерживаемая маховиком на продольном суппорте, позволяют быстро перемещать каретки.

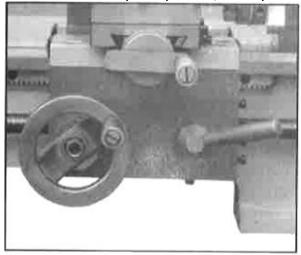
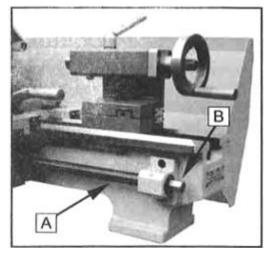



Рис. 6

#### Ходовой винт


Ходовой винт (А, рис. 7) установлен на передней части станины станка. Он соединен с коробкой передач с левой стороны для автоматической подачи и поддерживается

подшипником с обоих концов. Шестигранная гайка (В, рис. 7) на правом концепредназначен для компенсации люфта ходового винта.

Рис. 7

#### Задняя бабка

Задняя бабка образной траектории и любом месте. Задняя шпиндель с конусом и градуированной Шпиндель можно зажать



перемещается по Vможет быть зажата в бабка имеет усиленный Морзе № 2 (инструмент) шкалой.

в любой точке с

помощью зажимного рычага. Шпиндель приводится в движение маховикомв конце задней бабки.

Рис. 8

#### ЭЛЕМЕНТЫ УПРАВЛЕНИЯ

1. Кнопка аварийного включения/выключения (D, Станок включается и

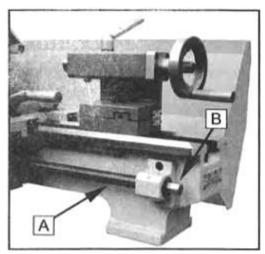



рис. 9) выключается

кнопкой ON/OFF. Нажмите, чтобы остановить все функции машины. Для перезапуска снимите крышку и нажмите кнопку ON/ OFF.

### 2. Переключатель (Е, рис. 9)

После включения станка поверните переключатель в положение «F», чтобы шпиндель

вращался против часовой стрелки (вперед). Поверните переключатель в положение «R», чтобы шпиндель вращался по часовой стрелке (назад). Положение «0» устанавливается в положение OFF, и шпиндель остается в режиме ожидания.

# 3. Переключатель управления переменной скоростью (F, рис. 9)

Поверните переключатель по часовой стрелке, чтобы увеличить скорость вращения шпинделя. Поверните переключатель против часовой стрелки, чтобы уменьшить скорость вращения шпинделя. Возможный диапазон скоростей зависит от положения приводного ремня.

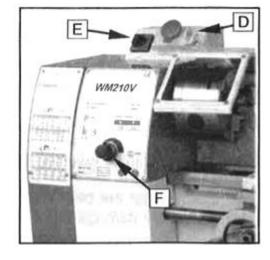



Рис. 9

## 4. Блокировка продольной опоры

Поверните винт с шестигранной головкой под торцевой ключ (A, рис. 10) по часовой стрелке и затяните до упора. Поверните против часовой стрелки и ослабьте, чтобы разблокировать.

**Осторожно:** винт, блокирующий продольную каретку, должен быть разблокирован перед включением автоматических подач, иначе токарный станок может быть поврежден.

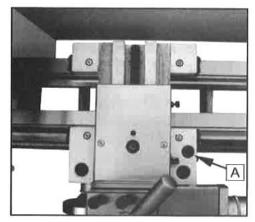



Рис. 10

## 5. Маховик продольного перемещения (В, рис. 11)

Поверните маховик по часовой стрелке, чтобы переместить узел каретки в направлении задней бабки (по часовой стрелке). Поверните маховик против часовой стрелки, чтобы переместить узел каретки в направлении передней бабки (слева).

### 6. Рычаг поперечного переключения (С, рис. 11)

Вращение по часовой стрелке перемещает поперечные салазки к задней части станка.

## 7. Рычаг зацепления с гайкой (D, рис. 11)

Переместите рычаг вниз, чтобы включить. Переместите рычаг, чтобы отключить.

# 8. Рычаг переключения верхних ползунков (Е, рис. 11)

Поверните по часовой стрелке или против часовой стрелки, чтобы переместить или зафиксировать положение.

# 9. Рычаг зажима стойки инструмента (F, рис. 11)

Поверните против часовой стрелки, чтобы ослабить, и по часовой стрелке, чтобы затянуть. Поверните стойку инструмента, когда рычаг разблокирован.

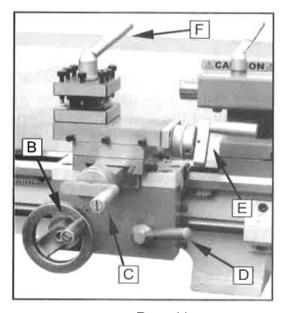



Рис. 11

#### 10. Болт зажима задней бабки (G, рис. 12)

Поверните шестигранную гайку по часовой стрелке, чтобы зафиксировать, и против часовой стрелки, чтобы разблокировать.

#### 11. Рычаг зажима пиноли задней бабки (Н, рис. 12)

Поверните рычаг по часовой стрелке, чтобы заблокировать шпиндель, и против часовой стрелки, чтобы разблокировать.

# 12. Маховик для перемещения пиноли задней бабки (I, рис. 12)

Поверните по часовой стрелке, чтобы переместить втулку подшипника шпинделя вперед. Поверните против часовой стрелки, чтобы втянуть подшипник шпинделя.

# 13. Регулировка смещения задней бабки (Ј, рис. 12)

Три установочных винта, расположенные на основании задней бабки, используются для перемещения конической задней бабки.

Ослабьте стопорный винт на конце задней бабки. Ослабьте один боковой установочный винт, одновременно затягивая другой, пока на шкале не отобразится величина смещения. Затяните стопорный винт.

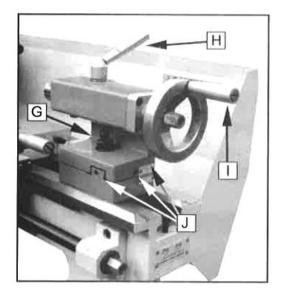



Рис. 12

#### ОБСЛУЖИВАНИЕ

### Замена ручки

Специальная ручка, обрезающая головку шпинделя, имеет цилиндрическую форму. Ослабьте три стопорных болта и гайки (А, рис. 13 показаны только две) на фланце токарного патрона, чтобы снять патрон. Установите новую ручку и закрепите ее теми же крепежными болтами и гайками.

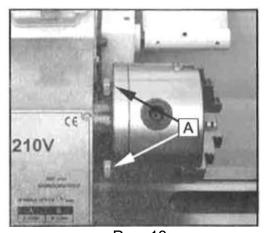



Рис. 13

#### Настройка инструмента

Зажмите токарный нож в держателе инструмента. Инструмент должен быть плотно зажат. Во время токарной обработки инструмент имеет тенденцию изгибаться под действием силы сдвига, возникающей при образовании стружки. Для достижения наилучших результатов размер выступающей части инструмента должен составлять не менее 3/8 дюйма.

Угол среза считается правильным, если режущая кромка находится на одной линии с осевой линией заготовки. Правильная высота инструмента может быть достигнута путем сравнения режущей кромки инструмента с центральной точкой, установленной на задней бабке. При необходимости используйте стальные прокладки под инструментом, чтобы получить необходимую высоту.

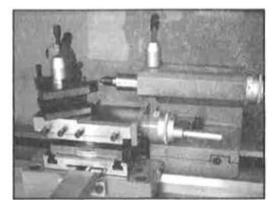



Рис. 14

## Изменение скорости

- 1. Отвинтите два крепежных винта (В, рис. 15) и снимите защитную крышку.
- 2. Установите правильное положение клинового ремня (С, рис. 16).
- 3. Затяните натяжной ролик и снова затяните

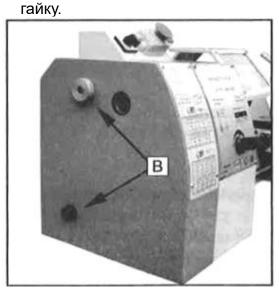



Рис. 15

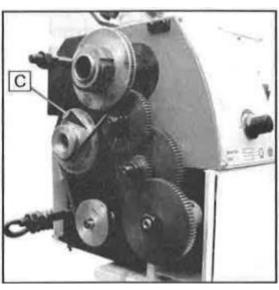
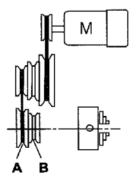




Рис. 16



PRĘDKOŚĆ WRZECIONA 🗘 mir

| 50-1250 | 100-2500 |
|---------|----------|
| Α       | В        |

## Ручная токарная обработка

Перемещение коробки скольжения, поперечное перемещение и маховик верхних салазок можно использовать для продольного и поперечного перемещения.

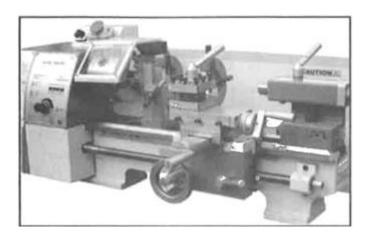



Рис. 17

### Продольное точение с автоматической подачей

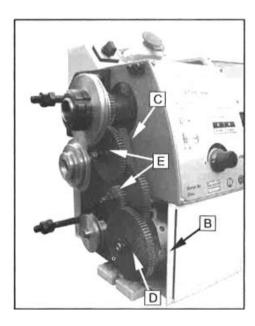

Используйте таблицу (A, рис. 18) на токарном станке, чтобы выбрать скорость подачи или форму резьбы. Отрегулируйте переключение передач, если требуемая подача или профиль резьбы не могут быть достигнуты с установленным набором шестерен.



Рис. 18

#### Замена шестерен переключения

- 1. Отключите машину от источника питания.
- 2. Открутите два крепежных винта и снимите защитную крышку.
- 3. Ослабьте стопорный винт (В, рис. 19) на квадранте.
- 4. Наклоните квадрант (С, рис. 19) вправо.
- 5. Отвинтите гайку (D, рис. 29) с ходового винта или гайку (E, рис. 19) с четырехгранных болтов, чтобы снять передние переключающие колеса.
- 6. Установите зубчатые пары в соответствии с таблицей резьбы подачи (рис. 20) и снова ввинтите шестерни в квадрант на четверть.
- 7. Наклоняйте квадрант влево, пока шестерни снова не включатся.
- 8. Снова отрегулируйте зазор шестерни, вставив простой лист бумаги в качестве средства регулировки или прокладки между шестернями.
- 9. Зафиксируйте сектор стопорным винтом.
- 10. Установите на место защитный кожух передней бабки и снова подключите устройство к источнику питания



## ТАБЛИЦА РЕЗЬБЫ И ПОДАЧИ

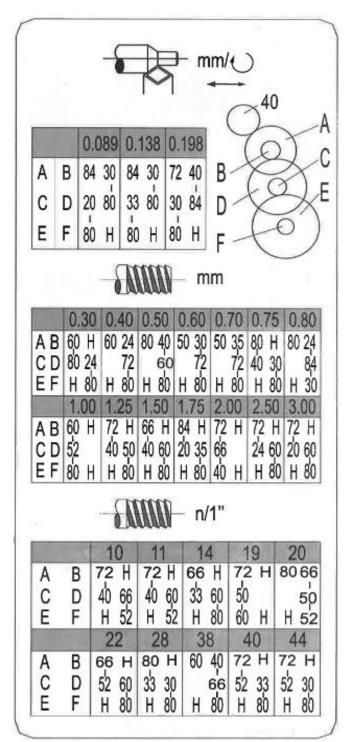



Рис. 20

#### Продольное точение (рис. 21)

При продольном точении инструмент перемещается параллельно оси вращения заготовки. Подачу можно производить вручную, поворачивая маховик на продольной опоре станка или верхних салазках, или активируя автоматическую подачу. Поперечная подача на глубину резания достигается с помощью поперечного суппорта.

### Глубина резания

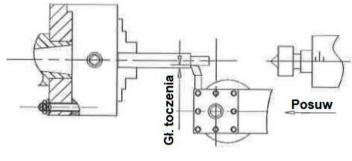



Рис. 21

## Торцевая токарная обработка и выемки (рис. 22)

При поперечном точении инструмент перемещается перпендикулярно оси вращения заготовки. Подача осуществляется вручную с помощью маховика поперечного суппорта. Поперечная подача на глубину резания осуществляется с помощью верхних салазок или продольной опоры станка.

кормить - кормить

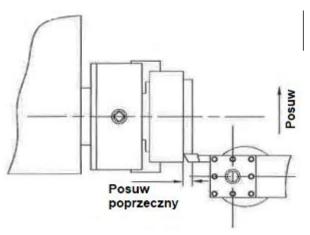
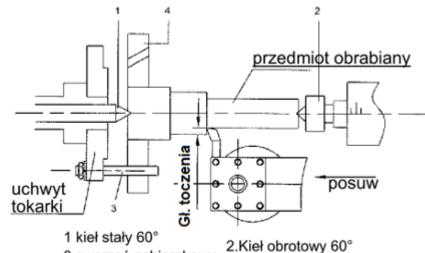




Рис. 22

## Поворот между центрами (рис. 23)

Для точения между центрами необходимо снять патрон со шпинделя. Поместите зуб МТ3 в наконечник шпинделя, а зуб МТ 2 в заднюю бабку. Установите заготовку токарным станком между центрами. Водитель приводится в движение сцепкой или дискомпревращение.

Внимание:Всегда наносите небольшое количество смазки на клык задней бабки, чтобы предотвратить перегрев кончика клыка. Глубина реза - глубина реза



tarcza zabierakowa

Рис. 23

## Поворот конуса путем смещения задней бабки

Обработка на боковой угол 5 может быть повернута сдвигом задней бабки. Угол зависит от длины заготовки.

3.sworzeń zabierakowy

Для перемещения задней бабки ослабьте стопорные винты (А, рис. 24) Отвинтите установочный винт (В, рис. 24) на правом конце задней бабки. Ослабьте передний

регулировочный винт (С, рис. 24) и добейтесь того же размера, затягивая задний регулировочный винт (D, рис. 24), пока не будет достигнута желаемая конусность. Желаемая поперечная регулировка может быть считана со шкалы. (Д, рис. 24). Сначала снова затяните установочный винт (В, рис. 24), а затем два (передний и задний) регулировочных болта, чтобы зафиксировать заднюю бабку в нужном положении.

Снова затяните стопорный болт задней бабки (А, рис. 24). Заготовка должна удерживаться между центрами и приводиться в движение планшайбой и приводом. После поворота конуса задняя бабка должна вернуться в исходное положение с нулевой позицией на шкале задней бабки. (Е, рис. 24)

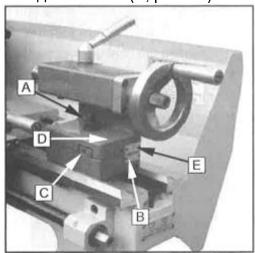
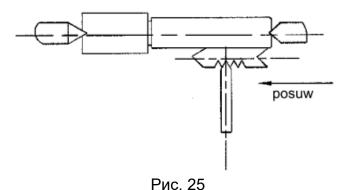



Рис. 24

### Нарезка резьбы


Установите машину на желаемый профиль резьбы (в соответствии со схемой резьбы, рис. 20). Запустите машину и закрутите полугайку. Когда инструмент достигнет детали, он нарежет первоначальный нарез резьбы. Когда инструмент достигает конца нарезания, остановите станок, выключив двигатель, и одновременно оттяните инструмент от детали, чтобы он освободил резьбу. Не отворачивайте рычаг на полгайки. Измените направление вращения двигателя, чтобы режущий инструмент вернулся в исходную точку. Повторяйте эти шаги, пока не получите желаемый результат.

#### ПРИМЕЧАНИЯ

#### Пример: внешняя резьба

- Диаметр заготовки необходимо довести до диаметра нужной резьбы.
- Заготовка требует фаски в начале резьбы и поднутрения на выходе резьбы.
- Скорость должна быть как можно ниже.
- Механизмы переключения должны быть установлены в соответствии с требуемыми контурами.
- Инструмент для нарезания резьбы должен иметь точную форму образца резьбы, он должен быть полностью прямоугольным и зажатым так, чтобы он находился заподлицо с точкой поворота.
- Резьба производится на различных стадиях нарезки, так что режущий нож полностью выдавливает нить (путем поперечного скольжения) в конце каждой стадии нарезки.
- Инструмент отводится от гайки ходового винта, приводимый в действие реверсивным переключателем.
- Остановите станок и подайте резьбонарезной инструмент на малую глубину резания с помощью поперечного суппорта.
- Перед каждым проходом перемещайте верхний ползун на 0,2–0,3 мм влево и вправо

попеременно, чтобы свободно обрезать нити. Таким образом, нитеобрезатель отрезает только одну сторону нити при каждом отрезке. Поддерживайте свободное нарезание резьбы до тех пор, пока не будет достигнута почти полная глубина резьбы.



## ПРИНАДЛЕЖНОСТИ ДЛЯ ТОКА

## Универсальный трехкулачковый токарный патрон

Используя этот универсальный патрон, вы можете зажимать круглые, треугольные, квадратные, шестиугольные, восьмиугольные и двенадцатиугольные заготовки. (Рис. 26)

**Внимание:** новые токарные станки имеют очень тугие зажимные губки. Это необходимо для обеспечения точной опрессовки и длительного срока службы. При многократном открывании и закрывании челюсти регулируются автоматически, и их работа становится все более плавной.

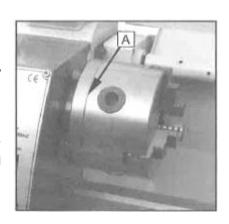



Рис. 26

#### Внимание:

Для оригинального 3-х кулачкового патрона, установленного на токарном станке, завод установил патрон наилучшим образом, чтобы гарантировать точность удержания с помощью двух меток «0» (A, puc. 26), показанных на фланце патрона и патроне.

Есть два типа челюстей: внутренние и внешние челюсти. Обратите внимание, что количество кулачков соответствует количеству внутри паза патрона. Не смешивайте их вместе.

Когда вы собираетесь их собирать, устанавливайте их в порядке возрастания 1-2-3, когда вы собираетесь их снимать, вынимайте их в порядке убывания 3-2-1, один за другим.

После завершения этой процедуры поверните губки на наименьший диаметр и убедитесь, что все три губки плотно прилегают друг к другу.

# Независимый четырехкулачковый токарный патрон (дополнительно)

Этот специальный патрон имеет четыре независимо регулируемых кулачка. Они позволяют удерживать асимметричные детали и обеспечивают точную конфигурацию цилиндрических деталей.

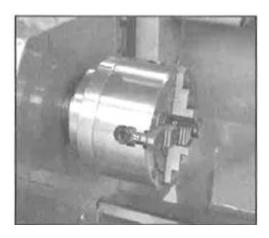



Рис. 27

## Патрон (необязательно)

Используйте сверлильный патрон, чтобы удерживать центрирующие сверла задней бабки и спиральные сверла. (Б, рис. 28)

Оправка с конусом Морзе (дополнительно) Оправка необходима для крепления сверлильного патрона к задней бабке. Имеет конус Морзе № 2 (С, рис. 28)

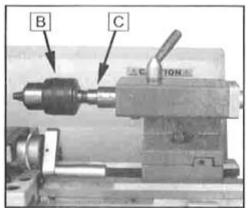



Рис. 28

### Поворотная точка (опционально)

Точка поворота установлена на шарикоподшипниках. Его использование настоятельно рекомендуется для токарной обработки на скорости свыше 600 об/мин.

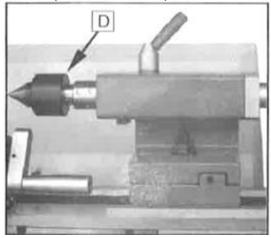



Рис. 29

## Люнет (опционально)

Люнет служит опорой для валов на свободном конце задней бабки. Для многих операций нельзя использовать заднюю бабку, поскольку она мешает токарному ножу или сверлу, и поэтому ее необходимо снять со станка.

Неподвижный люнет, который функционирует как концевая опора, обеспечивающая работу без перегиба. Люнет монтируется на полозьях люльки и фиксируется снизу стопорной пластиной. Скользящие пальцы требуют постоянной смазки в точках контакта для предотвращения преждевременного износа.

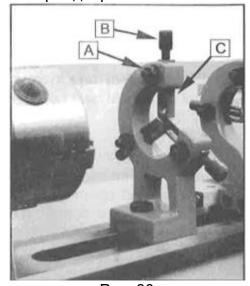



Рис. 30

#### Установка люнета

- 1. Ослабьте три шестигранные гайки. (А, рис. 31)
- 2. Ослабьте винты с накатанной головкой (В, Рис. 36) и откройте скользящие пальцы (С, Рис. 31), пока люнет можно будет перемещать пальцем вокруг заготовки. Закрепите люнет на месте.
- 3. Затяните винты с накатанной головкой так, чтобы пальцы плотно прилегали к заготовке, но не плотно прилегали к ней. Затяните три гайки (А, рис. 31). Смажьте точки скольжения машинным маслом.
- 4. Если губки изнашиваются после длительного использования, кончики пальцев могут быть распилены или перефрезерованы.

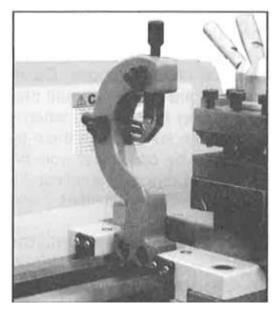



Рис. 31

## Люнет (опционально)

Люнет установлен на продольной каретке и следует за движением токарного инструмента. Требуются только два скользящих пальца. Положение третьего пальца занимает поворотный нож. Люнет используется для токарных операций на длинных тонких заготовках. Предотвращает изгиб заготовки под давлением токарного ножа. (Рис. 31) Расположите пальцы плотно вокруг заготовки, но не слишком туго. Смазывайте пальцы во время операции, чтобы предотвратить преждевременный износ.

#### РЕГЛАМЕНТ

Через некоторое время может потребоваться регулировка из-за износа некоторых движущихся частей.

#### Подшипники главного шпинделя

Подшипники главного шпинделя регулируются на заводе. Если осевой люфт становится очевидным после длительного использования, подшипники можно отрегулировать.

Прикрепите шлицевую гайку (A, рис. 32) к задней части шпинделя, ослабьте внешнюю шлицевую гайку (B, рис. 32). Регулируйте шлицевую гайку (A, рис. 32) до тех пор, пока не будет компенсирован весь осевой люфт. Шпиндель должен по-прежнему вращаться свободно. Установите на место шлицевую гайку (A, рис. 32) и затяните внешнюю шлицевую гайку (B, рис. 32).

**Предупреждение**: чрезмерная затяжка или предварительная нагрузка повредят подшипники.



Рис. 32

#### Регулировка поперечного скольжения

Поперечные салазки снабжены направляющей планкой (С, рис. 33) и могут регулироваться винтами (D, рис. 33), оснащенными контргайками. (Е, рис. 33)

Ослабьте стопорные гайки и затяните установочные болты, пока каретка не будет двигаться свободно без люфта. Затяните стопорные гайки, чтобы сохранить

регулировку.

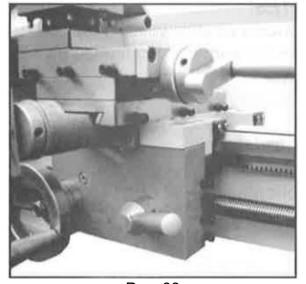



Рис. 33

## Регулировка верхнего слайда

Верхняя каретка оснащена направляющей (F, рис. 34) и регулируется винтами (G, рис. 34) со стопорными гайками. (H, рис. 34) Ослабьте стопорные гайки и затяните установочные винты, пока каретка не будет двигаться свободно без люфта. Затяните стопорные гайки, чтобы сохранить регулировку.

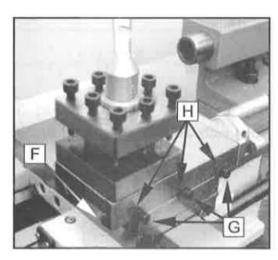



Рис. 34

## Регулировка направляющей полугайкой

Зацепление с полугайкой можно отрегулировать с помощью винтов (I, рис. 35), оснащенных контргайками (J, рис. 35). Ослабьте стопорные гайки с правой стороны каретки и отрегулируйте рулевые болты так, чтобы обе полугайки двигались свободно без люфта. Затяните гайку.

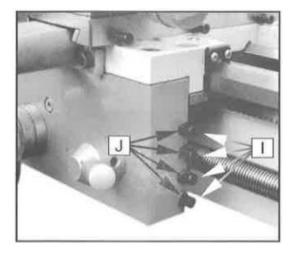



Рис. 35

#### СМАЗКА

Предупреждение! Перед вводом в эксплуатацию токарный станок должен работать во всех точках смазки, а все баки должны быть заполнены до рабочего

### уровня! Несоблюдение может привести к серьезным повреждениям!

#### ПРИМЕЧАНИЯ:

Слегка смазывайте все направляющие перед каждым использованием.

Слегка смажьте шестерни переключения и ходовой винт смазкой на литиевой основе.

## 1. Продольная опора

Смазывайте четыре смазочных отверстия (A, puc. 36) машинным маслом 20W один раз в день.

#### 2. Поперечное скольжение

Смазывайте два смазочных отверстия (В, рис. 36) машинным маслом 20W один раз в день.

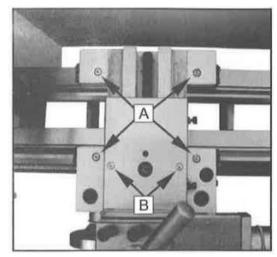



Рис. 36

#### 3. Ходовой винт

Смазывайте левое смазочное отверстие (С, рис. 37) и правое смазочное отверстие (D, рис. 38) машинным маслом ISO VG 68 один раз в день.

Перед вводом в эксплуатацию токарный станок должен работать во всех точках смазки, а все баки должны быть заполнены до рабочего уровня! Несоблюдение может привести к серьезным повреждениям!

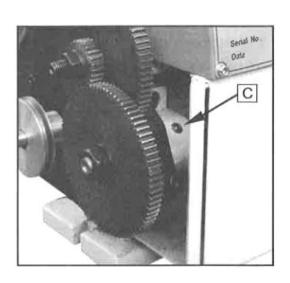



Рис. 37

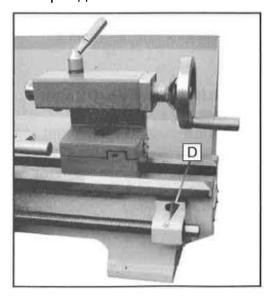



Рис. 38

## ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ

Токарный станок рассчитан только на 500 Вт, 1 РН, 230 В. Убедитесь, что мощность, доступная на объекте, имеет такой же номинал, что и токарный станок. Используйте схему подключения (рис. 39) для подключения станка к сети. Убедитесь, что токарный станок правильно заземлен.

Подключение токарного станка и любые другие электротехнические работы могут выполняться только авторизованным электриком!

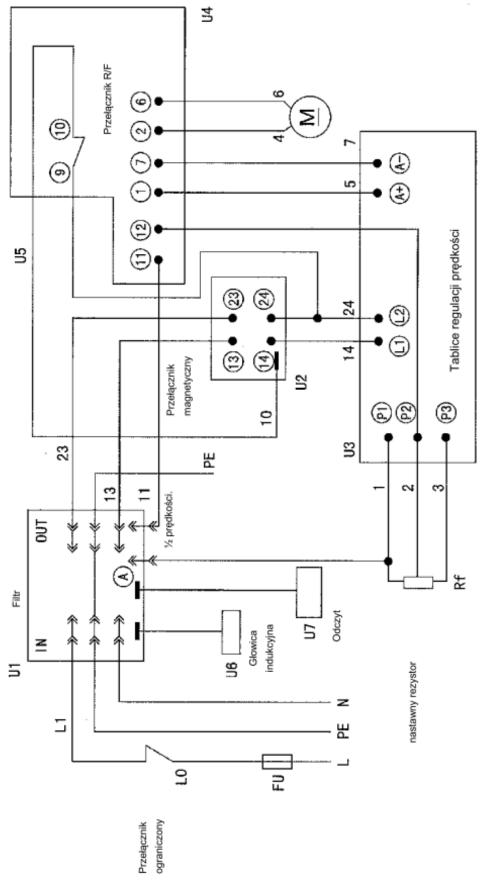



Рис. 39 Схема подключения токарного станка

## ОБСЛУЖИВАНИЕ

Поддерживайте станок во время его работы, чтобы обеспечить точность и срок службы станка.

1. Для поддержания точности и функциональности станка важно бережно обращаться с ним, содержать его в чистоте и регулярно смазывать и смазывать. Только заботясь о ней, вы можете быть уверены, что производительность машины останется неизменной.

#### ПРИМЕЧАНИЯ:

Отсоединяйте вилку машины от сети при выполнении работ по очистке, техническому обслуживанию или ремонту!

Масло, жир и чистящие средства являются загрязняющими веществами, которые нельзя удалять через канализацию или обычные отходы. Утилизируйте эти вещества в соответствии с действующим природоохранным законодательством. Салфетки, пропитанные маслом, жиром и моющим средством, легко воспламеняются. Соберите ветошь или чистящую вату в подходящий закрытый сосуд и утилизируйте их безопасным для окружающей среды способом — не выбрасывайте их вместе с обычными отходами!

- 2. Слегка смажьте все направляющие перед каждым использованием. Шестерни переключения передач и ходовой винт также необходимо слегка смазать литиевой смазкой.
- 3. Во время работы стружку, попадающую на поверхность скольжения, следует своевременно очищать и часто проводить осмотр, чтобы предотвратить попадание стружки в зону между продольной опорой станка и направляющей станины станка. Войлок асфальта должен быть очищен в течение определенного периода времени.

#### ПРИМЕЧАНИЯ:

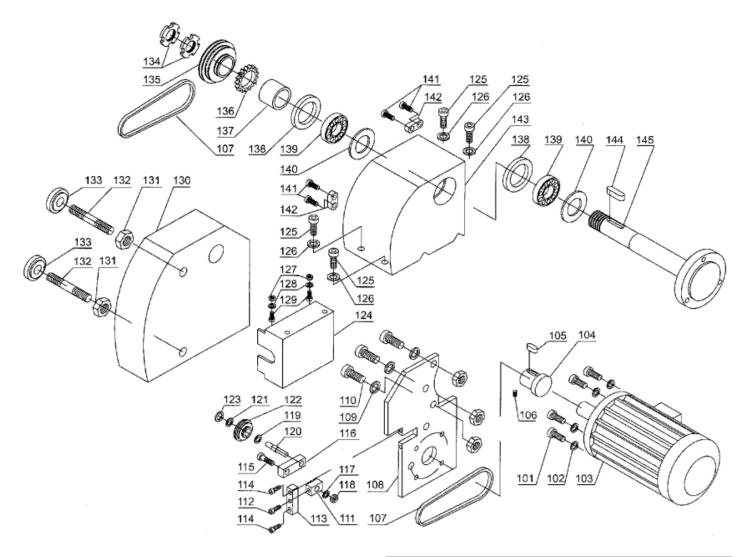
Не удаляйте стружку голыми руками. Существует риск порезов из-за стружки с острыми краями.

Никогда не используйте легковоспламеняющиеся растворители или чистящие средства или вещества, выделяющие вредные пары! Защищайте электрические компоненты, такие как двигатели, выключатели, распределительные шкафы и т. д., от влаги во время очистки.

- 4. После ежедневного использования удалите всю стружку и очистите различные части станка и нанесите машинное масло для предотвращения коррозии.
- 5. Для сохранения точности обработки следует беречь клыки, поверхность станка для обоймы и направляющей, не допускать механических повреждений и износа в результате неправильной направляющей.
- 6. В случае повреждения немедленно провести техническое обслуживание.

#### ПРИМЕЧАНИЯ:

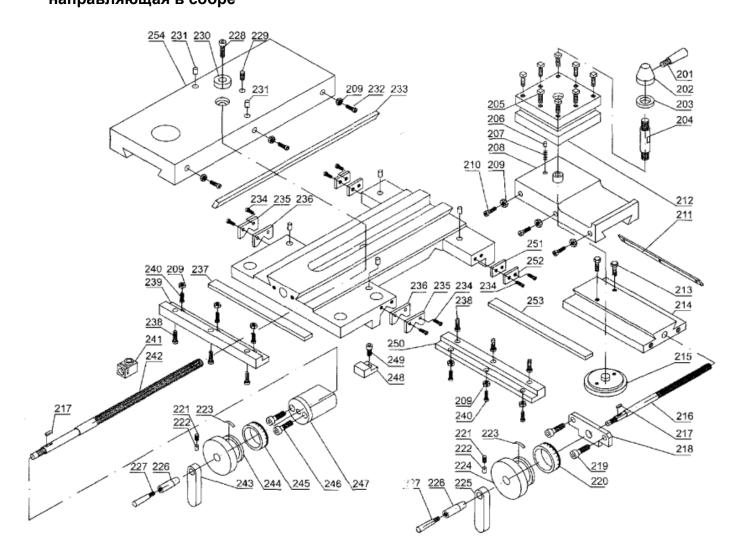
Ремонтные работы могут выполняться только квалифицированным персоналом с соответствующими знаниями в области механики и электрики.


#### ПОИСК ПРОБЛЕМЫ

| Проблема                                  | Возможная причина           | Ликвидация                                    |
|-------------------------------------------|-----------------------------|-----------------------------------------------|
| Поверхность заготовки слишком шероховатая | Тупой инструмент            | Заточите инструмент снова                     |
|                                           | Инструмент прыгает          | Зажмите инструмент меньшей выступающей частью |
|                                           | Подача слишком высокая      | Уменьшить подачу                              |
|                                           | Слишком маленький радиус на | Увеличить радиус                              |

|                                          | кончике инструмента                                                |                                                                                       |
|------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Заготовка становится конической          | Клыки не выровнены (задняя бабка имеет смещение)                   | Расположите заднюю бабку по<br>отношению к бивням                                     |
|                                          | Верхний суппорт неправильно выровнен (обработка верхним суппортом) | Выровняйте верхние салазки<br>правильно                                               |
| Токарный станок<br>гремит                | Подача слишком высокая                                             | Уменьшить подачу                                                                      |
|                                          | Люфт в коренном подшипнике                                         | Отрегулировать коренной подшипник                                                     |
| Бивень нагревается во<br>время работы    | Заготовка расширилась                                              | Ослабьте клык задней бабки                                                            |
| Инструмент имеет<br>короткий срок службы | Слишком высокая скорость резки                                     | Уменьшить скорость резки                                                              |
|                                          | Поперечная подача слишком высокая                                  | Уменьшите поперечную подачу (припуск на обработку отделка не должна превышать 0,5 мм) |
|                                          | Недостаточное охлаждение                                           | Больше охлаждающей жидкости                                                           |
| Слишком высокий                          | Задний угол слишком мал                                            | Увеличьте угол зазора                                                                 |
| износ задней<br>поверхности              | Наконечник инструмента не адаптирован к высота клыка               | Правильная регулировка высоты инструмента                                             |
|                                          |                                                                    |                                                                                       |
| Режущая кромка<br>обрывается             | Угол лезвия (клина) слишком мал (наросты теплый)                   | Увеличьте угол лезвия                                                                 |
|                                          | Шлифовальная трещина из-за плохого охлаждения                      | Охладить равномерно                                                                   |
|                                          | Чрезмерный люфт в подшипнике шпинделя                              | Отрегулируйте люфт в подшипнике шпинделя                                              |
|                                          | Настройка (вибрация)                                               | Параметр                                                                              |
| Ofnosouries inte                         | MUOTINALOUT CONCETTO TO THE CONCE                                  | Votouoputi Toisvo To servicio                                                         |
| Обрезанная нить<br>неправильная          | Инструмент зажат неправильно или                                   | Установить также по отношению к клыку                                                 |
|                                          | начал шлифовать неправильно                                        | Правильно отшлифуйте угол                                                             |
|                                          | Неверный план                                                      | Установите правильный контур                                                          |
|                                          | Неправильный диаметр                                               | Поверните заготовку до нужного<br>диаметра                                            |
| Шпиндель не<br>включается                | Аварийный выключатель<br>активирован                               | Разблокируйте переключатель<br>аварийной остановки                                    |

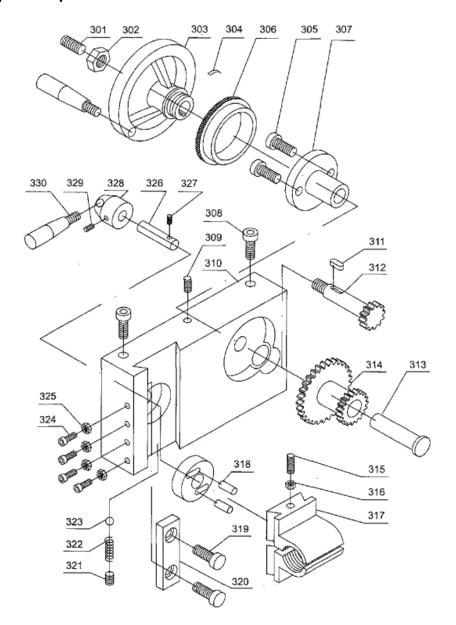
## СХЕМЫ И СПИСОК ДЕТАЛЕЙ


## Сборка передней бабки



| Nr części | Opis                | Specyfikacja  | llość |
|-----------|---------------------|---------------|-------|
| 101       | Śruba               | M5x25         | 4     |
| 102       | Podkładka           |               | 4     |
| 103       | Silnik DC           | 83ZY005A      | 1     |
| 104       | Sciągacz silnika    |               | 1     |
| 105       | Klucz               | A4x4x20       | 1     |
| 106       | Śruba               | M6x8          | 1     |
| 107       | Pas                 | Gates-5M- 360 | 2     |
| 108       | Wspornik            |               | 1     |
| 109       | Podkładka           | 8             | 3     |
| 110       | Sruba               | M8x20         | 3     |
| 111       | Blok                |               | 1     |
| 112       | Sruba               | M6x30         | 1     |
| 113       | Blok                |               | 1     |
| 114       | Śruba               | M6x20         | 1     |
| 115       | Sruba               |               | 1     |
| 116       | Blok                |               | 1     |
| 117       | Podkładka           |               | 1     |
| 118       | Nakrętka            |               | 1     |
| 119       | Pierścień sprężysty | 08x0.8        | 1     |
| 120       | Śruba               |               | 1     |
| 121       | Łożysko             |               | 1     |
| 122       | Koło pasowe         |               | 1     |

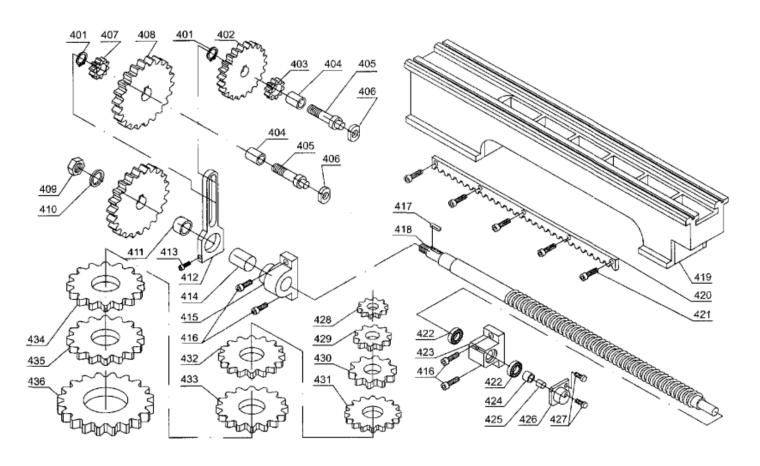
| Nr części | Opis                | Specyfikacja | llość |
|-----------|---------------------|--------------|-------|
| 123       | Pierścień sprężysty | 022x1        | 1     |
| 124       | Pokrywa             |              | 1     |
| 125       | Sruba               | M8x25        | 4     |
| 126       | Podkładka           | 8            | 4     |
| 127       | Nakrętka            | M8           | 2     |
| 128       | Podkładka           | 8            | 2     |
| 129       | Sruba               | M8           | 2     |
| 130       | Pokrywa pasa        |              | 1     |
| 131       | Nakrętka            | M10          | 2     |
| 132       | Sruba               | M10x80       | 2     |
| 133       | Nakrętka            | M10          | 2     |
| 134       | Nakrętka            | M27x1        | 2     |
| 135       | Sciągacz wrzeciona  |              | 1     |
| 136       | Koło zębate         | 40T          | 1 1   |
| 137       | Oddzielacz          |              | 1     |
| 138       | uszczelka           |              | 1     |
| 139       | Łożysko             | 30206        | 1     |
| 140       | Pokrywa smaru       |              | 1     |
| 141       | Sruba               | M4x10        |       |
| 142       | Blok                |              | 1     |
| 143       | wrzeciennik         |              | 1     |
| 144       | Klucz               | A3x3x15      | 1     |
| 145       | wrzeciono           |              | 1     |


# Верхняя направляющая, поперечная направляющая, продольная направляющая в сборе



| Nr części | Opis               | Specyfikacja | llość |
|-----------|--------------------|--------------|-------|
| 201       | trzonek            |              | 1     |
| 202       | Podstawa trzonka   |              | 1     |
| 203       | Podkładka          |              | 1     |
| 204       | Sruba              |              | 1     |
| 205       | Sruba              | M6x25        | 1     |
| 206       | sworzeń            |              | 1     |
| 207       | sprężyna           | 5x10x1       | 1     |
| 208       | Sanie wzdłużne     |              | 1     |
| 209       | Nakrętka           | M4           |       |
| 210       | Sruba              | M4x14        |       |
| 211       | Przykładka liniowa |              | 1     |
| 212       | Podtrzymka górna   |              | 1     |
| 213       | Śruba              | M5x30        | 1     |
| 214       | Podstawa wahliwa   | M6x20        | 1     |
| 215       | Szalka mikrometru  |              | 1     |
| 216       | Sruba pociągowa    |              | 1     |
| 217       | Klucz              | 3x12         | 1     |
| 218       | Wspornik           |              | 1     |
| 219       | Sruba              | M5x12        | 2     |
| 220       | Pierścień          |              | 1     |
| 221       | Sruba              |              | 2     |
| 222       | Sworzeń            |              | 2     |
| 223       | Sprężyna           |              | 2     |
| 224       | Kółko ręczne       |              | 1     |
| 225       | blok uchwytu       |              | 1     |
| 226       | Tuleja uchwytu     |              | 2     |
| 227       | uchwyt             |              | 2     |

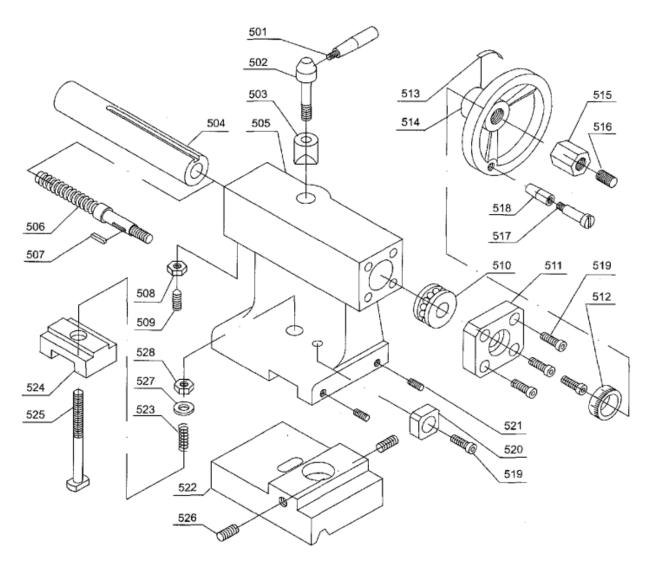
| Nr części | Opis                 | Specyfikacja | llość |
|-----------|----------------------|--------------|-------|
| 228       | Sruba                | M4x8         | 1     |
| 229       | Śruba                | M5x10        | 1     |
| 230       | Tuleja               |              | 1     |
| 231       | Smarownica kapturowa | 05           | 2     |
| 232       | Sruba                | M4x20        | 3     |
| 233       | Przykładka liniowa   |              | 1     |
| 234       | Śruba                |              | 8     |
| 235       | pokrywa wycieraczki  |              | 2     |
| 236       | wycieraczka          |              | 2     |
| 237       | Przykładka liniowa   |              | 1     |
| 238       | Śruba                | M5x10        | 6     |
| 239       | Blok przesuwny       |              | 1     |
| 240       | Sruba                | M4x10        | 6     |
| 241       | Nakrętka             |              | 1     |
| 242       | Sruba pociągowa      |              | 1     |
| 243       | Blok uchwytu         |              | 1     |
| 244       | Kółko ręczne         |              | 1     |
| 245       | Pierścień            |              | 1     |
| 246       | Sruba                | M6x50        | 2     |
| 247       | Wspornik             |              | 1     |
| 248       | Płyta zaciskowe      |              | 1     |
| 249       | Śruba                |              | 1     |
| 250       | Blok przesuwny       |              | 1     |
| 251       | wycieraczka          |              | 2     |
| 252       | pokrywa wycieraczki  |              | 2     |
| 253       | Przykładka liniowa   |              | 1     |
| 254       | Suport poprzeczny    |              | 1     |


## Сборка опорной коробки



| Nr części | Opis                | Specyfikacja | llość |
|-----------|---------------------|--------------|-------|
| 301       | Sruba               | M8x8         | 1     |
| 302       | Nakrętka            | M8           | 1     |
| 303       | Kółko ręczne        |              | 1     |
| 304       | Sprężyna            |              | 1     |
| 305       | Sruba               | M5x10        |       |
| 306       | Pierścień           |              | 1     |
| 307       | Wspornik            |              | 1     |
| 308       | Śruba               | M8x25        |       |
| 309       | Śruba               | M5x8         | 1     |
| 310       | Skrzynka suportowa  |              | 1     |
| 311       | Klucz               | A3x3x8       | 1     |
| 312       | Wałek koła zębatego | 14T          | 1     |
| 313       | wałek               |              | 1     |
| 314       | Koło zębate         | 44/21T       | 1     |
| 315       | Śruba               | M4x35        | 1     |
| 316       | Nakrętka            | M4           | 1     |

| Nr części | Opis             | Specyfikacja | llość |
|-----------|------------------|--------------|-------|
| 317       | Półnakrętka      |              | 1     |
| 318       | Sworzeń          | 04x10        | 1     |
| 319       | Ŝruba            | M4x10        | 2     |
| 320       | Blok             |              | 1     |
| 321       | Ŝruba            | M6x8         | 1     |
| 322       | Sprężyna         | 0.6x03.5x12  | 1     |
| 323       | kulka            | 04.5         | 2     |
| 324       | Sruba            | M4x12        | 4     |
| 325       | Nakrętka         | M4           | 1     |
| 326       | wałek            |              | 1     |
| 327       | Sworzeń          | 03x30        | 2     |
| 328       | Podstawa uchwytu |              | 1     |
| 329       | Śruba            | M5X6         | 1     |
| 330       | uchwyt           |              | 1     |
| 331       | uchwyt           |              | 1     |


## Переключение передач, станина в сборе



| Nr części | Opis                | Specyfikacja               | llość |
|-----------|---------------------|----------------------------|-------|
| 401       | Pierścień sprężysty |                            | 2     |
| 402       | Koło zębate         | 60T wyposażenie opcjonalne | 1     |
| 403       | Koło zębate         | 20T                        | 1     |
| 404       | Tuleja              |                            | 1     |
| 405       | Sruba               |                            | 1     |
| 406       | Nakrętka            | M8                         | 1     |
| 407       | Koło zębate         | 24T                        | 1     |
| 408       | Koło zębate         | 80T                        | 1     |
| 409       | Nakrętka            | M10                        | 1     |
| 410       | Podkładka           | 10                         | 1     |
| 411       | Tuleja              |                            | 1     |
| 412       | rama                |                            | 1     |
| 413       | Sruba               | M6x35                      | 1     |
| 414       | Tuleja              |                            | 1     |
| 415       | Lewa podpora        |                            | 1     |
| 416       | Šruba               | M6x14                      |       |
| 417       | Klucz               | A3x3x16                    | 1     |
| 418       | Sruba pociągowa     |                            | 1     |

| Nr części | Opis          | Specyfikacja               | llość |
|-----------|---------------|----------------------------|-------|
| 419       | łoże          |                            | 1     |
| 420       | zębatka       |                            | 1     |
| 421       | Sruba         | M2x12                      |       |
| 422       | łożysko       | 51100                      |       |
| 423       | Prawa podpora |                            | 1     |
| 424       | Nakrętka      |                            | 1     |
| 425       | Ŝruba         | M8x6                       | 1     |
| 426       | pokrywa       |                            | 1     |
| 42        | Śruba         | M4x12                      |       |
| 428       | Koło zębate   | 70T                        | 1     |
| 429       | Koło zębate   | 30T                        | 1     |
| 430       | Koło zębate   | 33T                        | 1     |
| 431       | Koło zębate   | 35T wyposażenie opcjonalne | 1     |
| 432       | Koło zębate   | 40T                        | 1     |
| 433       | Koło zębate   | 72T                        | 1     |
| 434       | Kolo zębate   | 50T                        | 1     |
| 435       | Kolo zębate   | 52T                        | 1     |
| 436       | Koło zębate   | 66T                        | 1     |

## Задняя бака



| Nr części | Opis               | Specyfikacja | llość |
|-----------|--------------------|--------------|-------|
| 501       | uchwyt             |              | 1     |
| 502       | Podstawa uchwytu   |              | 1     |
| 503       | Podstawa blokująca |              | 1     |
| 504       | tuleja             |              | 1     |
| 505       | konik              |              | 1     |
| 506       | Sruba pociągowa    |              |       |
| 507       | Klucz              | A3x3x8       | 1     |
| 508       | Nakrętka           | M6           | 1     |
| 509       | Sruba              | M6x14        | 1     |
| 510       | łożysko            | 51100        | 1     |
| 511       | obudowa            |              | 1     |
| 512       | Pierścień          |              | 1     |
| 513       | Sprężyna           |              | 1     |
| 514       | Kółko ręczne       |              |       |

| Nr części | Opis            | Specyfikacja | llość |
|-----------|-----------------|--------------|-------|
| 515       | Nakrętka        | M8           | 1     |
| 516       | Sruba           | M8x6         | 1     |
| 517       | Sruba uchwytu   |              | 1     |
| 518       | Tuleja uchwytu  |              | 1     |
| 519       | Sruba           | M5x12        | 1     |
| 520       | Blok nastawczy  |              | 1     |
| 521       | Sruba           | M6x12        | 1     |
| 522       | podstawa        |              | 1     |
| 523       | Sprężyna        |              | 1     |
| 524       | Płyta zaciskowa |              | 1     |
| 525       | Sruba           | M10x70       | 1     |
| 526       | Sruba           | M6x16        |       |
| 527       | Podkładka       | 010          | 1     |
| 528       | Nakrętka        | M10          | 1     |