4. ПОРЯДОК РАБОТЫ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 4.1. Патрон токарный расконсервировать, ознакомиться с паспортом на изделие.
- 4.2. Стяжные болты завернуть в корпус патрона, затянув до упора гаечным ключом.
- 4.2. Закрепить патрон на станок, затянув все болты, прилагаемыми гайками, затянув их гаечным ключом и проверив надежность крепления.
- 4.3. Запустить станок, установить малые обороты и проверить с помощью вспомогательного измерительного инструмента значения радиального и торцевого биений патрона на холостом ходу.
- 4.4. После проверки правильности крепления можно перейти к работе на станке.

5. КОМПЛЕКТНОСТЬ

В комплект входят:

- патрон токарный в сборе с прямыми кулачками;
- комплект обратных кулачков;
- комплект крепежных элементов (болты с гайками);
- ключ четырехгранный;
- паспорт.

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1. Крепление патрона токарного должно быть надежным, исключающим самопроизвольное ослабление в процессе работы.
- 6.2. Запрещается применять ударную нагрузку при закреплении заготовки.

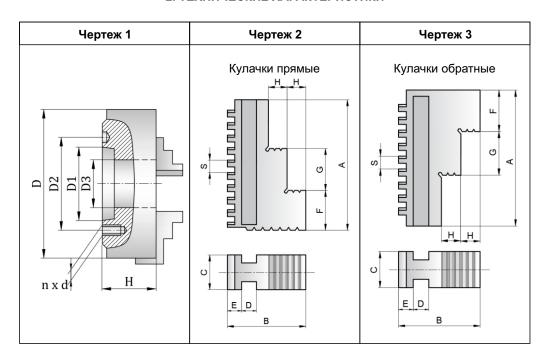
7. СВЕДЕНИЯ О КОНСЕРВАЦИИ

- 7.1. Патрон токарный подвергнут консервации в соответствии с требованиями ГОСТ9014-76. Наименование и марка консерванта масло консервационное К-17.
- 7.2. Срок хранения патрона токарного без переконсервации 2 года, при условии хранения в условиях по ГОСТ 15150-69.

ДАТА ВЫПУСКА:		··	·	
	год	месяц	лень	

Технический паспорт Патрон токарный

3-кулачковый самоцентрирующий, спирально-реечный, с ручным приводом. Крепление непосредственно на фланцевые концы шпинделя.
Тип К11-С.



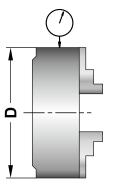
1. НАЗНАЧЕНИЕ

Патрон токарный самоцентрирующий трехкулачковый относится к классу спирально-реечных самоцентрирующих трехкулачковых патронов с креплением на станке непосредственно на фланцевые концы шпинделя. Самоцентрирующие спирально-реечные токарные патроны предназначены для установки на универсальные токарные, револьверные, внутришлифовальные станки.

Применяются в условиях единичного, мелкосерийного и серийного производства. В трехкулачковых самоцентрирующих патронах закрепляют заготовки круглой и шестигранной формы или круглые прутки большого диаметра. В отличие от токарных патронов клинореечного типа, не требуют времени на переналадку в том случае, когда требуется установка на другой диаметр зажима.

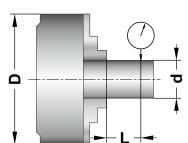
2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1 (для чертежа 1)

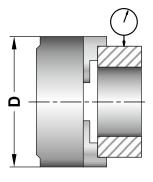

Артикул	D	С	D1	D2	D3	Н	n x d
b208163	200	6	106,375	133,4	65	84	4xM12
b208166	250	6	106,375	133,4	80	95	4xM12
b208175	315	8	139,719	171,4	105	106	4xM16
b208181	400	11	196,869	235	135	118	6xM20
b208187	500	11	196,869	235	190	135	6xM20

С - Условный конус

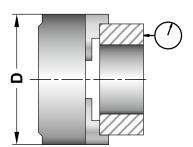
Таблица 2 (для чертежа 2 и 3)


Диам. патрона	Α	В	С	D	E	F	G	Н	S
200	85	65	22	10	9,8	29	28	14	8
250	105	73	27	10	11,8	35	35	14	10
315	126	86	36	13	13,5	42	42	17	11
400	138	90	36	13	13,6	42	52	17	11
500	180	100	45	16	14,8	54	69	24	12

3. ТОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ


Радиальное биение наружного диаметра патрона

D	Допуски радиального биения, мкм
80	25
100	25
125	25
160	30
200	30
250	40
315	40
400	50
500	50


Радиальное биение контрольной оправки

D	d	L	Допуски радиального биения, мкм
80	8; 12; 15	40	50
100	12; 16; 18	40	50
125	16; 20; 28	50	50
160	20; 32; 40	50	60
200	25; 32; 45	80	60
250	32; 50; 55	80	80
315	50; 80;	120	80
400	50; 80;	120	80
500	55; 80;	160	100

Радиальное биение контрольного кольца

D	Допуски радиального биения, мкм
80	50
100	50
125	50
160	60
200	60
250	80
315	80
400	80
500	100

Торцевое биение контрольного кольца

D	Допуски торцевого биения, мкм
80	30
100	30
125	40
160	40
200	40
250	50
315	50
400	50
500	50