

8 800 550-37-57 звонок бесплатный

Инструкция по эксплуатации

Gree FGR 30 BNa-M канальная сплит-система

Цены на товар на сайте:

http://kondicionery.vseinstrumenti.ru/split-sistemy/kanalnye/gree/fgr 30 bna-m/

Отзывы и обсуждения товара на сайте:

http://kondicionery.vseinstrumenti.ru/split-sistemy/kanalnye/gree/fgr 30 bna-m/#tab-Responses

СПЛИТ-СИСТЕМЫ КОНДИЦИОНИРОВАНИЯ С ВНУТРЕННИМ БЛОКОМ КАНАЛЬНОГО ТИПА (R410A)

РУКОВОДСТВО ПО УСТАНОВКЕ И ЭКСПЛУАТАЦИИ

МОДЕЛИ:

FGR20/BNa-M FGR25/CNa-M FGR30/BNa-M FGR40/BNa-M

Сертификат соответствия № РОСС CN.AИ46.B12124 Срок действия сертификата до 12.01.2011

Установленный срок службы 7 лет Производитель — GREE Electric Appliances, Inc. (Китай)

СОДЕРЖАНИЕ

1. назначение кондиционера	3
2. Требования безопасности	3
3. Технические данные	4
4. Устройство и принцип работы кондиционера	7
5. Управление кондиционером	8
6. Центральный пульт управления с недельным таймером	18
7. Указания по эксплуатации	20
8. Техническое обслуживание	20
9. Габаритные и установочные размеры блоков	21
10. Монтаж фреоновых трубок	26
11. Подключение кабелей электропитания и межблочных	
соединительных кабелей управления	28
12. Схемы электрические блоков	32

1. НАЗНАЧЕНИЕ КОНДИЦИОНЕРА

Канальный кондиционер предназначен для создания благоприятных температурно-влажностных условий в жилых и служебных помещениях (офисах, кафе и т.п.).

Кондиционер осуществляет:

- охлаждение, нагрев, осушение воздуха в помещении и очистку воздуха от пыли:
- оптимальный выбор режима работы в автоматическом режиме в зависимости от температуры в помещении;
- автоматическое поддержание заданной температуры в помещении в режиме охлаждения, нагрева, осущения;
- автоматическую разморозку теплообменника внешнего блока.

Кондиционер снабжен функцией включения/выключения по таймеру (TIMER) и функцией оптимальной работы во время сна (SLEEP).

Управление кондиционера осуществляется проводным пультом дистанционного управления (ПДУ).

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Общие указания

Перед началом эксплуатации внимательно изучите данную инструкцию.

В целях обеспечения гарантии безопасной и долговременной эксплуатации, работы по установке и монтажу кондиционеров рекомендуется проводить специалистами сервисных служб.

2.1 Требования электробезопасности

- Электрическое подключение кондиционера должно быть выполнено специалистами в соответствии с действующими нормативными правилами.
- Кондиционер подключать только к силовой цепи с напряжением указанным в технических требованиях и способной выдержать ток, потребляемый кондиционером при работе.
- При подключении в цепи питания должен быть установлен автоматический выключатель, рассчитанный на соответствующую мощность.
 - Кондиционер должен быть надежно заземлен.
- Не допускается касание заземляющего провода водопроводных труб, громоотводов, телефонной линии.
- Сетевой шнур должен быть расположен таким образом, чтобы он не подвергался механическому воздействию (защемление, хождение по нему, установка посторонних предметов)
- Не допускается установка внутреннего блока в местах прямого попадания воды, наличия большого количества пара.
- Кондиционер не должен устанавливаться в зоне воздействия сильных электромагнитных полей.
- Расстояние от блоков кондиционера до других электронных приборов (телевизор, магнитофон и т.п.) должно быть не менее 1 м.

2.2 Общие требования безопасности

- Кондиционер должен быть установлен таким образом, чтобы обеспечить свободный вход и выход воздуха через вентиляционные жалюзи блоков, а также свободный доступ персонала при эксплуатации и сервисном обслуживании, с учетом норм техники безопасности.
- Не открывайте защитные панели и решетки кондиционера во время работы и не вставляйте пальцы и другие предметы в решетки.
- При извлечении фильтров для чистки обязательно отключите электропитание.
- Блоки кондиционера устанавливать на достаточно прочной, обеспечивающей надежное крепление, способной выдержать вес блоков стене или опоре.
- При выборе места установки следует избегать размещения блоков вблизи нагревательных приборов и прямого воздействия солнечного света.
- Не размещать кондиционер вблизи печей, бойлеров и т.п., а также вблизи агрегатов, где возможна утечка горючих взрвоопасных газов.
- Не размещать блоки кондиционера в помещениях с большим содержанием масляных паров, дыма и пыли.
- В целях уменьшения воздействия вибрации при креплении внешнего блока на опоре или кронштейне, необходимо установить резиновые прокладки между опорой или кронштейном и блоком.
- Сливной шланг должен быть выведен таким образом чтобы обеспечить беспрепятственное удаление воды из поддона внутреннего блока, т.к. его переполнение может привести к попаданию воды внутрь помещения на людей и окружающие предметы (мебель, оргтехника и т.д).
 - Не допускайте к управлению и эксплуатации кондиционера детей.

Внимание!!!

Несоблюдение требований настоящей инструкции может привести к причинению вреда жизни и здоровью.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

Внимание! Изготовитель оставляет за собой право на модернизацию, изменение технических характеристик и состава действующих моделей.

В таблице 3.1. приведены данные для температурных условий в соответствии с ISO 5151&94:

- при работе на охлаждение: внутри помещения 27 °C DB /19 °C WB снаружи помещения 35 °C DB/24 °C WB;
- при работе на нагрев: внутри помещения 20 °C DB /15 °C WB снаружи помещения 7 °C DB/6 °C WB.

	в целом		FGR 20/BNa-M	FGR 25/CNa-M	
Обозначение блоков	внутренний		FGR 20/BNa-M(I)	FGR 25/CNa-M(I)	
	наружный	наружный		FGR 25/CNa-M(O)	
-	охлаждение		20,0	25,0	
Производительность	нагрев	кВт	22,0	27,5	
Источник питания			3Ф ~380В, 50ГЦ		
Номинальная	охлаждение		8,4	9,8	
потребляемая мощ- ность	нагрев	кВт	7,0	9,0	
Номинальный ток	охлаждение	Α	15,3	22,2	
поминальный ток	нагрев	А	13,2	21,2	
Максимальный рабо-	охлаждение	Α	22,7	26	
чий ток	нагрев	А	19,1	26	
Коэффициент энергоэф	фективности EER/CC)P	2,38/2,97	2,5/3,06	
Класс энергоэффективн	ости охлаждение/обо	грев	F/D	E/D	
Тип хладагента			R4	-10A	
Масса хладагента*		КГ	5,3	6,7	
	диаметр трубы,	жидк.	3/8" (9,52)	3/8" (9,52)	
	дюйм(мм)	газ	3/4" (19,05)	1" (25,4)	
Характеристика фреоновой трассы	Выход из внутр. блока		слева по ходу воздуха		
	Мах длина		50	50	
повой трассы	Мах перепад вы- соты**	м	30	30	
	тип подключения к	блокам	Паяное со	оединение	
Диаметр дренажного от	вода (наружный)		1"	1"	
Подвод кабеля	к наружн. блоку		5 х 4,0 мм²	5 x 10,0 мм²	
электропитания	к внутр. блоку		5 x1,5 мм²	5 x 1,5 мм²	
Межблочное электросое	единение			2 x 0,75 мм²	
	номинальный ток	Α	25	15	
Автоматический выкл. (внутренний блок)	характеристика от ния***	ключе-	C		
	номинальный ток	Α	32	32	
Автоматический выкл. (наружный блок)	характеристика от ния***	ключе-	C		
Расход воздуха внутрен	него блока	м³/час	4000	4800	
Полное статическое дав		Па	200	110	
	внутренний		54	55	
Уровень шума	наружный	dB (A)	61	66	
Габаритные размеры,	внутренний		1463x389x799	1500x500x1000	
(Ш x В x Г)	наружный	ММ	1150x1350x460	1150x1600x360	
	внутренний		86	150	
Bec	наружный	КГ	127	185	

^{*} Количество фреона, заправленного в наружном блоке рассчитано на трассу длиной не более 7,5 м. При увеличении трассы необходимо производить дозаправку кондиционера в расчете 54 г на 1 м длины для моделей 20 и 25 кВт, 110 г/м для модели 30 кВт и 170 г/м для модели 40 кВт.

^{**} При перепаде высот между внутренним и внешним блоком более 7 метров необходимо через каждые 4–6 м по высоте устанавливать маслоподъемную петлю.

^{***} Данные по автоматическим выключателям приведены для фирмы ABB, при использовании автоматических выключателей других фирм ток отсечки должен быть не менее 7 Ін (Ін — номинальный потребляемый ток). Допустимый дисбаланс фаз по напряжению ±2%.

	в целом		FGR 30/BNa-M	FGR40/BNa-M	
Обозначение блоков	внутренний		FGR 30/BNa-M(I)	FGR 40/BNa-M(I)	
	наружный		FGR 30/BNa-M(O)	FGR 40/BNa-M(O)	
D	охлаждение		30,0	40,0	
Производительность	нагрев	кВт	33,0	42,0	
Источник питания			3Ф ~380В, 50ГЦ		
Номинальная	охлаждение		12,5	15,8	
потребляемая мощ- ность	нагрев	кВт	10,5	14,0	
Номинальный ток	охлаждение	A	23,4	30,0	
Поминальный ток	нагрев	^	22,6	26,6	
Максимальный рабо-	охлаждение	Α	30,6	42	
чий ток	нагрев	А	26,4	38,2	
Коэффициент энергоэф	фективности EER/CC)P	2,4/3,14	2,5/3,0	
Класс энергоэффективно	ости охлаждение/обо	грев	F/D	E/D	
Тип хладагента			R4	10A	
Масса хладагента*		КГ	9,5	10,5	
	диаметр трубы,	жидк.	1/2" (12,7)	5/8" (15,87)	
	дюйм(мм)	газ	1 1/8" (28,57)	1 1/8" (28,57)	
Характеристика фреоновой трассы	Выход из внутр. блока				
	Мах длина		50	50	
Повой Грассы	Мах перепад вы- соты**	м	30	30	
	тип подключения к	блокам			
Диаметр дренажного отг	вода (наружный)		1"	1"	
Подвод кабеля	к наружн. блоку		5 х 10,0 мм²	5 x 10,0 мм²	
электропитания	к внутр. блоку		5 x1,5 мм²	5 x1,5 мм²	
Межблочное электросое	единение				
A×	номинальный ток	Α	25	25	
Автоматический выкл. (внутренний блок)	характеристика от ния***	ключе-	С		
	номинальный ток	Α	40	40	
Автоматический выкл. (наружный блок)	характеристика от ния***	ключе-	C		
Расход воздуха внутрен	него блока	м³/час	5500	7000	
Полное статическое дав.		Па	200	150	
	внутренний	ID / 1.	57	58	
Уровень шума	наружный	dB (A)	67	69	
Габаритные размеры,	внутренний		1500x500x1000	1700x650x1100	
(Ш x В x Г)	наружный	ММ	974x1190x566	1290x1772x880	
	внутренний	КГ	156	215	
Bec					

^{*} Количество фреона, заправленного в наружном блоке рассчитано на трассу длиной не более 7,5 м. При увеличении трассы необходимо производить дозаправку кондиционера в расчете 54 г на 1 м длины для моделей 20 и 25 кВт, 110 г/м для модели 30 кВт и 170 г/м для модели 40 кВт.

^{**} При перепаде высот между внутренним и внешним блоком более 7 метров необходимо через каждые 4–6 м по высоте устанавливать маслоподъемную петлю.

^{***} Данные по автоматическим выключателям приведены для фирмы ABB, при использовании автоматических выключателей других фирм ток отсечки должен быть не менее 7 Ін (Ін — номинальный потребляемый ток). Допустимый дисбаланс фаз по напряжению ±2%.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ КОНДИЦИОНЕРА

4.1 Состав кондиционера в соответствии с рисунком 4.1

Канальный кондиционер состоит из внутреннего блока, наружного блока, соединительного трубопровода, проводного пульта управления, кабеля управления и электрических кабелей питания.

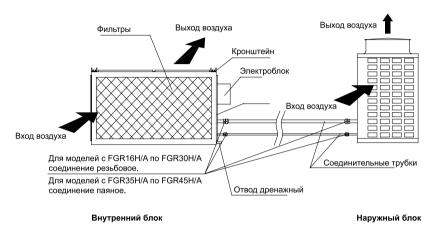


Рисунок 4.1 – Состав кондиционера

4.2 Принцип работы

Принцип работы кондиционера заключается в следующем (см. рисунок 4.2). Компрессор обеспечивает циркуляцию хладагента в системе. Он отсасывает из испарителя пары хладагента, сжимает их и нагнетает в конденсатор. В конденсаторе происходит охлаждение паров хладагента до их насыщения и конденсации, то есть до перехода паров в жидкое состояние. Терморегулирующий вентиль(капиллярная трубка) пропускает жидкий хладагент из конденсатора в испаритель, происходит дросселирование жидкости, то есть жидкий хладагент поступает в испаритель под низким давлением, что необходимо для его кипения (испарения) при низкой температуре. Затем газообразный хладагент вновь всасывается компрессором и цикл повторяется.

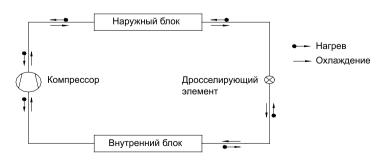


Рисунок 4.2 - Схема работы кондиционера

5. УПРАВЛЕНИЕ КОНДИЦИОНЕРОМ

Управление кондиционером производится при помощи проводного пульта управления (п. 5.1), который входит в комплект поставки.

Длина провода от пульта до внутреннего блока в стандартной поставке 8м. Максимальная длина провода может быть 20 м.

В качестве опций может быть использоваться пульт централизованного управления со встроенным недельным таймером (раздел 6).

5.1 Проводной пульт управления

Внимание! Отсутствие описания для отдельных знаков индикации и кнопок на пульте управления свидетельствует об отсутствии соответствующих функций.

Рис. 5.1

5.1.1 Индикация ЖК-дисплея пульта (Рис. 5.2)

Рис. 5.2

5.1.1 Комментарии по индикации на жк-дисплее см. в таблице 5.1

Таблица 5.1

Поз	Индикация	Комментарии
1	SWING (Качание жалюзи)	функция отсутствует
2	AIR (Приток воздуха с улицы)	функция отсутствует
3	SLEEP (режим COH)	Индикация при включении режима SLEEP (COH)
4	Режим AUTO (Автоматический)	Индикация при включении автоматиче- ского режима (AUTO)
5	Режим COOL (Охлаждение)	Индикация при включении режима охлаждения (COOL)
6	Режим DRY (Осушение)	Индикация при включении режима осу- шения (DRY)
7	Режим FAN (Вентиляция)	Индикация при включении режима вентиляции (DRY)
8	Режим НЕАТ (Нагрев)	Индикация при включении режима на- грева (DRY)
9	Функция Defrost (Разморозка)	Индикация при автоматическом включении функции размораживания в режиме нагрева
10	Функция Gate control	Функция отсутствует
11	Функция Lock (Блокировка)	Блокировка кнопок пульта при управлении
12	Функция Shield (Защита)	Блокировка управления с индивидуального пульта при дистанционном управлении
13	Функция Turbo	функция отсутствует
14	Функция Memory (Авторестарт)	Автоматическое включение кондиционера в работу с заданными параметрами после несанкционированного отключения электропитания и возобновления его подачи.
15	Автоматическая индикация при работе кондиционера	
16	Save (Энергосбережение)	Режим энергосбережения
17	Индикация заданной темпера- туры	
18	E-Heater (Электронагреватель)	функция отсутствует
19	Blow (Самоочистка)	Индикация функции самоочистки
20	Timer (Таймер)	Индикация режима таймера
21	Режим Quiet (Тихий)	Индикация функции бесшумной работы/бесшумной работы в автоматическом режиме

5.1.2 Кнопочная панель пульта (рис. 5.3).

Комментарии к кнопочной панели см. в таблице 5.2.

Рис. 5.3

Таблица 5.2

Поз	Наименование кнопки	Описание
1	Enter/Cancel	Кнопка выбора, подтверждения и отмены вы- бранных режимов и параметров
2, 6	« ▲ », « ▼ »	Кнопки установки значений заданной температуры и времени таймера
3	Fan (Скорость вентилятора)	Скорость вентилятора задана производите- лем и не регулируется
4	Mode (Режим работы)	Кнопка задания режимов работы
5	Function (Функции)	Кнопка включения функций Blow, Sleep, Save, Quiet. Функции Air, Turbo, Heater отсутствуют
7	Timer (Таймер)	Кнопка включения функции таймера
8	ON/OFF (ВКЛ/ВЫКЛ)	Кнопка включения/выключения кондиционера

- 5.1.2.1 При одновременном нажатии кнопок MODE (поз. 4) и ▲ (поз. 2) включается функция Memory (авторестарт), то есть, кондиционер автоматически возобновляет работу в случае перебоев в подаче электропитания. Для отмены функции необходимо на кнопки нажать повторно.
- 5.1.2.2 При одновременном нажатии кнопок ▲ и ▼ включается функция LOCK, т.е блокируются кнопки пульта управления. Для отмены функции необходимо на кнопки нажать повторно.
- 5.1.2.3 При нажатии одновременно кнопок MODE (поз. 4) и FUNCTION (поз. 5) и удержании их в течение 5 сек включается режим выставления адреса пульта. Установка адреса проводного пульта производится работниками сервисной службы.

- 5.2 Порядок управления с проводного пульта
- 5.2.1 При подаче электропитания на кондиционер на проводном пульте загорается индикация температуры см. рис. 5.4 (а).
- 5.2.1.1 При включении кондиционера в работу кнопками ON/OFF автоматически на жк-дисплее высвечивается индикация в соответствие с рис. 5.4 (б).

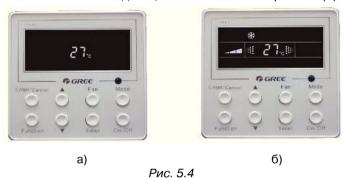


Рис. 5.5

5.2.3 Кнопками ▲ и ▼ устанавливается необходимая температура в режимах охлаждения (COOL), нагрева (HEAT) и осушения (DRY) в диапазоне от 16 до 30 °C (Рис. 5.6).

В режимах AUTO, FAN температура не устанавливается.

Рис. 5.6

- 5.2.4 Установка функции таймера (рис. 5.7).
- 5.2.4.1 Функция таймера (Timer) позволяет запрограммировать включение или выключение кондиционера с заданными параметрами через установленный промежуток времени.
 - 5.2.4.2 Диапазон включения или выключения по таймеру от 0,5 до 24 часов.

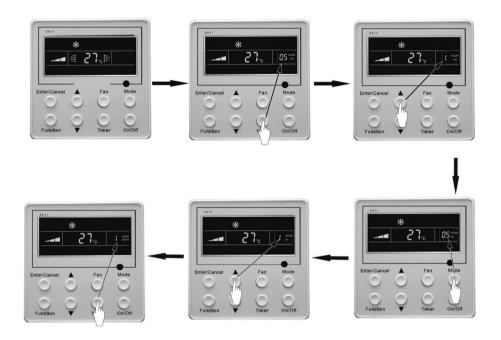


Рис. 5.7

- 5.2.4.3 Для установки включения кондиционера по таймеру (TIMER ON) при неработающем кондиционере необходимо нажать на кнопку TIMER, на жк-дисплее в зоне времени (Hour) начинает мигать индикация. Кнопками \blacktriangle и \blacktriangledown устанавливается необходимое время, через которое включится. Затем нажать кнопу TIMER для подтверждения.
- 5.2.4.4 При неработающем кондиционере можно параллельно установить время выключения, если после установки значений времени включения, до подтверждения кнопкой TIMER нажать кнопку MODE. Затем кнопками ▲ и ▼ задать необходимое время выключения и нажать кнопку TIMER для подтверждения.
- 5.2.4.5 Для установки выключения кондиционера по таймеру (TIMER ON) при работающем кондиционере необходимо нажать на кнопку TIMER, на жк-дисплее в зоне времени (Hour) начинает мигать индикация. Кнопками \blacktriangle и \blacktriangledown устанавливается необходимое время, через которое выключится. Затем нажать кнопу TIMER для подтверждения.
- 5.2.4.6 При работающем кондиционере можно параллельно установить время включения, если после установки значений времени выключения, до подтвержде-

ния кнопкой TIMER нажать кнопку MODE. Затем кнопками ▲ и ▼ задать необходимое время включения и нажать кнопку TIMER для подтверждения.

- 5.2.4.7 Если на работающем блоке установлено и время включения, и время выключения, то на дисплее пульта будет высвечиваться время выключения.
- 5.2.4.8 Если на не работающем блоке установлено и время включения, и время выключения, то на дисплее пульта будет высвечиваться время включения.
- 5.2.4.9 При неработающем блоке и одновременной установке TIMER OFF и TIMER ON время выключения (TIMER OFF) рассчитывается от времени включения.
- 5.2.4.10При работающем блоке и одновременной установке TIMER OFF и TIMER ON время включения (TIMER OFF) рассчитывается от времени выключения.

5.2.5 Установка функции Sleep (Сон).

5.2.5.1 Для установки функции **Coh (Sleep)** необходимо при **включенном в ра-боту** кондиционере кнопкой **FUNCTION** выбрать функцию **Sleep и нажать кнопку ENTER/Cancel.** (Puc. 5.8).

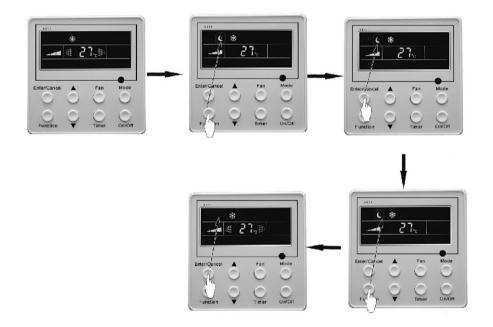


Рис. 5.8

- 5.2.5.2 Для выключения режима **Sleep (Сон)** кнопкой **FUNCTION** выбрать функцию **Sleep** и нажать кнопку **ENTER/Cancel.** (Рис. 5.2.5).
 - 5.2.5.3 Режим **Sleep (Сон)** выключается при выключении кондиционера.
- 5.2.5.4 Если режим **Sleep** установлен в режиме охлаждения, то после первого часа работы заданная температура автоматически повышается на 1 °C, после второго часа работы заданная температура автоматически повышается еще на 1 °C. Далее заданная температура не меняется в процессе работы.

- 5.2.5.5 Если режим **Sleep** установлен в режиме нагрева, то после первого часа работы заданная температура автоматически понижается на 1 °C, после второго часа работы заданная температура автоматически понижается еще на 1 °C. Далее заданная температура не меняется в процессе работы.
 - 5.2.5.6 Режим **Sleep** не задается в режимах кондиционера **AUTO** и **FAN**.

5.2.6 Функция энергосбережения (Save).

5.2.6.1 Функция энергосбережения представляет собой работу кондиционера в определенном заданном диапазоне температуры. То есть, в режиме охлаждения или нагрева задается нижнее или верхнее предельное значение температуры.

Нижнее значение температуры, установленное в функции Save может быть не ниже плюс 16 °C. Верхнее значение температуры, установленное в функции Save может быть не выше плюс 30 °C.

5.2.6.2 Для включения в рабочем режиме необходимо кнопкой FUNCTION выбрать функцию **Save** (рис. 5.9). Затем кнопками \blacktriangle и \blacktriangledown задать нижнее предельное значение температуры в режиме охлаждения или верхнее предельное значение в режиме нагрева и нажать кнопку Enter/Cancel для подтверждения.

Для отмены работы функции нужно еще раз кнопкой **FUNCTION** выбрать **Save** и нажать кнопку Enter/Cancel.

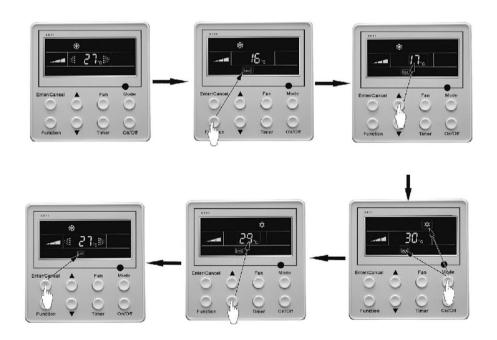


Рис. 5.9

5.2.6.3 Если после нажатия кнопки FUNCTION параметры не будут заданы в течение 5 сек, то система автоматически выходит из данной настройки.

- 5.2.6.4 Если включен режим кондиционера AUTO с установленной функцией Save, то параметры температуры определяются режимом AUTO.
- 5.2.6.5 При сбое электропитания и последующего восстановления значение функции сохраняются.
- 5.2.6.6 Если при включенной функции заданная температура выходит из диапазона установленных предельных значений температуры в функции **Save**, то приоритетное значение имеет предельное значение температуры, установленное в функции **Save**.
 - 5.2.7 Функция самоочистки (BLOW).
- 5.2.7.1 Функция BLOW это проветривание внутреннего блока кондиционера после выключения его пультом из режима охлаждения (COOL) или осушения (DRY).
- 5.2.7.2 При выключении кондиционера из режима охлаждения (COOL) или осушения (DRY) вентилятор внутреннего блока продолжает работать еще в течение 10 мин, затем выключается.
- 5.2.7.3 Для включения необходимо кнопкой FUNCTION выбрать функцию BLOW (рис. 5.2.6) и нажать кнопку Enter/Cancel для подтверждения.

Для отмены работы функции нужно еще раз кнопкой FUNCTION выбрать BLOW и нажать кнопку Enter/Cancel. (рис. 5.10).

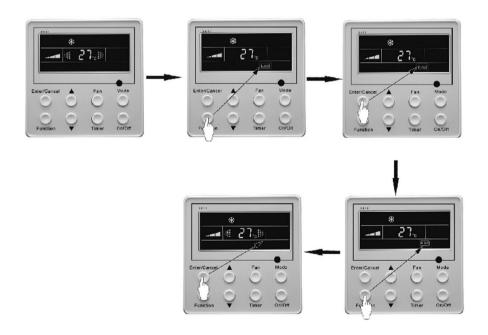


Рис. 5.10

5.3 Функция установки датчика температуры окружающего воздуха

5.3.1 В статусе кондиционера «Выключено» нажмите кнопки FUNCTION и TIMER одновременно и удерживайте в течение 5 сек. для вызова меню.

- 5.3.2 Нажмите кнопку MODE и для каждой установки кнопками ▲ и ▼ выберите датчик температуры, по которому будет работать кондиционер:
- 1) Датчик температуры окружающего воздуха, встроенный во внутренний блок (в зоне индикации времени таймера высвечивается значение 01).
- 2) Датчик температуры, встроенный в проводной пульт (в зоне индикации времени таймера высвечивается значение 02).
- 3) Датчик температуры во внутреннем блоке при работе в режиме охлаждения, осушения и вентиляции и датчик в пульте управления для режимов нагрева и автоматического.

5.4 Установка функции Memory (Авторестарт)

- 5.4.1 Функция **Memory (Авторестарт)** предполагает автоматическое возобновление работы кондиционера при отключении электропитания и последующем возобновлении.
- 5.4.2 Для включения функции авторестарта в рабочем режиме нажмите и удерживайте одновременно кнопки МОDE и «▲». При включении авторестарта на панели индикации загорается индикация MEMORY.

5.5 Запрос температуры окружающего воздуха наружного блока

5.5.1 Для запроса температуры **окружающего воздуха наружного блока** необходимо в режиме кондиционера ON или OFF нажать и удерживать кнопку **Enter/Cancel** в течение 5 с, после звукового сигнала на дисплее высветится температура. Для снятия запроса необходимо нажать любую кнопку.

Внимание! данная функция присутствует не во всех моделях наружных блоках.

5.6 Запрос ошибок

- 5.6.1 Нажмите и удерживайте одновременно кнопки FUNCTION и «▲» в течение 5 сек. Затем нажмите кнопку ENTER/CANCEL. Кондиционер прекращает работу на 30 мин.
- 5.6.2 После нажмите кнопку MODE. В зоне индикации температуры высвечивается порядковый номер ошибки 00-04. Кнопками ▲ и ▼ листайте коды ошибок, которые высвечивается в зоне индикации времени таймера, например E1.

5.7 Выбор шкалы температуры (Цельсия или Фаренгейта)

5.7.1 В состоянии OFF нажмите кнопку MODE и «▼» и удерживайте в течение 5 секунд. Показание температуры на дисплее будет меняться между шкалой Цельсия и Фаренгейта.

5.8 Блокировка кнопок пульта управления

5.8 Для блокировки кнопок пульта управления нажмите и удерживайте в течение 5 сек одновременно кнопки ▲ и ▼. На дисплее появиться значок «—».

5.9 Индикация кодов неисправностей

5.9.1При возникновении неисправности на жк-дисплее пульта управления высвечивается код неисправности в виде буквенно-цифровых символов (рис. 5.11).

Рис. 5.11

5.13 Таблица кодов неисправностей.

Код неис- правности	Комментарии
E1	Сработала защита по высокому давлению нагнетания компрессора
E2	Защита от обмерзания теплообменника внутреннего блока
E3	Защита по низкому давлению компрессора
E4	Защита по высокой температуре нагнетающей трубки компрессора
E5	Защита компрессора от перегрузок по току
E6	Неисправность коммутации
E8	Сработала защита электродвигателя вентилятора внутреннего блока
E9	Защита электродвигателя внутреннего блока
F0	Неисправность датчика входящего воздуха во внутреннем блоке
F1	Неисправность датчика на теплообменнике внутреннего блока
F2	Неисправность датчика на теплообменнике наружного блока
F3	Неисправность датчика температуры окружающего воздуха наружного блока
F4	Неисправность датчика температуры на нагнетающей трубке компрессора
F5	Неисправность датчика температуры в пульте управления (не для всех моделей)
EH	Неисправность электронагревателя (ТЭНа)
C5*	Неисправность разъема соединительного кабеля
C1	Короткое замыкание
C2	Перегорел предохранитель

^{* —} Для моделей FGR 20/BNa-M, FGR 30/BNa-M.

6. Центральный пульт управления с недельным таймером

6.1 В качестве опции может использоваться пульт централизованного управления со встроенным недельным таймером. (Рис. 6.1)

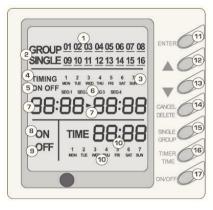


Рис. 6.1

Индикация состояния блока

Индикация времени часов

(OFF)

(CLOCK)

10

- 6.2 К одному центральному пульту может быть подключено до 16 кондиционеров данного типа (SENGLE GROUP).
- 6.3 В системе централизованного управления применяется протокол обмена RS485.
- 6.4 В качестве соединительного кабеля управления применяется 2-х жильная витая пара. Максимально допустимая длина кабеля не более 1200 м.
- 6.5 С центрального пульта возможно включение или выключение отдельных кондиционеров или группы кондиционеров, недельное программирование работы по таймеру. Для каждого дня работы возможно задание до 4 периодов работы кондиционеров (SEG1... SEG4).

Комментарии к Рис. 6.1

Ko	мментарии к Рис. б.1		
Поз.	Индикация	Поз.	Кнопки
1	ЖК-дисплей	11	Кнопка ENTER-подтверждение/ввод выбранного параметра
2	Номер кондиционера	12,13	Кнопки выбора параметров и значений
3	Индикация дня недели	14	Кнопка отмены, удаления выбранных значений
4	Зона индикации таймера	15	Кнопка выбора кондиционера или группы кондиционеров для активации работы или для удаления активации
5	Индикация состояния таймера: ON/OFF	16	Кнопка активации режима таймера для задания времени таймера или времени часов
6	Индикация временного периода	17	Кнопка включения или выключения блоков кондиционеров
7	Индикация времени включения и выключения по таймеру		
8	Индикация состояния блока (ON)		

6.6 Схема подключения пульта централизованного управления

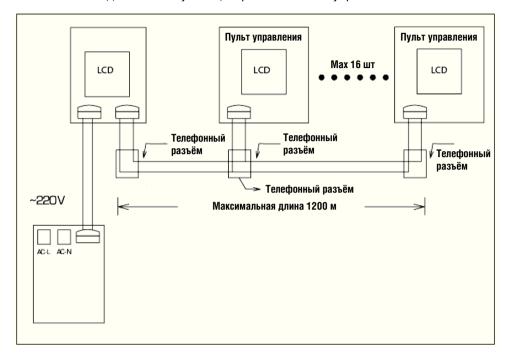


Рис. 6.2

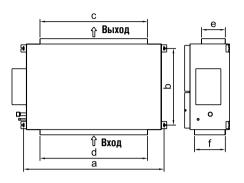
7. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

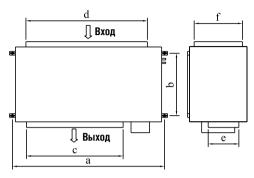
- 7.1 Эксплуатацию кондиционера производить в соответствие с требованиями настоящей инструкции.
 - 7.2 Температурный диапазон эксплуатации в соответствие таблицей 7.1

Таблица 7.1

	Внутри помещения, (DB/WB) °C	Снаружи помещения, (DB/WB) °C
Максимальная температура при охлаждении, t°C	32/23	43/26
Минимальная температура при охлаждении, t °C	21/15	18(-15*)/
Максимальная температура при нагреве, t °C	27/	24/18
Минимальная температура при нагреве, t °C	20/	-7/-8

^{*}Температура для блоков со встроенными низкотемпературными комплектами


- 7.3 Диапазон регулируемой температуры воздуха внутри помещения от 16 до 30 $^{\circ}$ C.
- 7.4 По вопросам гарантийного и пост гарантийного технического обслуживания обращайтесь в авторизованные сервисные центры.

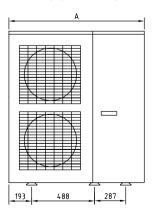

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1 Для обеспечения безопасной и безотказной работы необходимо своевременное техническое сервисное обслуживание. Работы по техническому обслуживанию должны проводиться специалистами сервисных центров.
- 8.2 При проведении сервисного обслуживания в обязательном порядке должны проверяться надежность контактов проводов заземления и электропитания
- 8.3 Воздушные нейлоновые фильтры внутреннего блока должны своевременно очищаться от загрязнений и промываться
- 8.4 Теплообменник наружного блока необходимо регулярно один раз в два месяца очищать от загрязнений нейлоновой щеткой или пылесосом.
- 8.5 Необходимо периодически проверять натяжение приводных ремней вентилятора и при необходимости регулировать.
- 8.6 Для обеспечения беспрепятственного слива конденсата необходимо проверять дренажную трубку на предмет отсутствия засорения.
- 8.7 После окончания сезона работы необходимо отключить источник питания, снять и очистить воздушные фильтры, очистить блоки от пыли.

9. ГАБАРИТНЫЕ И УСТАНОВОЧНЫЕ РЗМЕРЫ БЛОКОВ

9.1 Установочные размеры внутренних блоков

а. Блоки производительностью 20, 25 и 30 кВт


б. Блоки производительностью 40 кВт

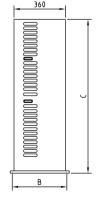
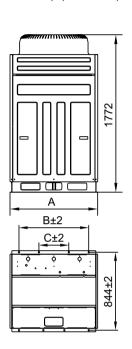
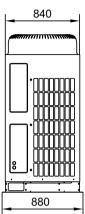

Модель блока	а	b	С	d	е	f
FG(R)20/ BNa -M(I)	1353	632	992	1150	192	343
FG(R)25/ CNa -M(I)	1560	910	331	1194	292	342
FG(R)30/ BNa -M(I)	1560	910	1194	1194	292	342
FG(R)40/ BNa -M(I)	1780	1040	868	1450	347	555

Рис. 9.1

Габаритные и установочные размеры наружных блоков

9.2.1 Габаритные и установочные размеры наружных блоков моделей FGR20/BNa-M(O) и FGR25/CNa-M(O), рис. 9.2.





Модель блока	Α	В	С
FGR20/BNa- M(O)	1150	422	1350
FGR25/CNa- M(O)	1150	422	1600

Рис. 9.2

9.2.2Габаритные и установочные размеры наружных блоков моделей FGR30/BNa-M(O) и FGR40/BNa-M(O), рис. 9.3.

Модель блока	Α	В	С
FGR30/BNa-M(O)	990	787	337
FGR40/BNa-M(O)	1290	1160	850

Рис. 9.3

- 9.3 Размещение и установка внутреннего блока
- 9.3.1 Внутренний блок должен быть установлен горизонтально с использованием строительного уровня, рис. 9.4.

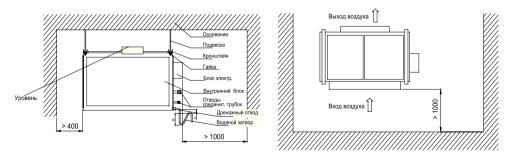
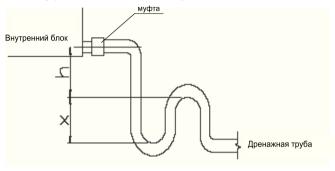
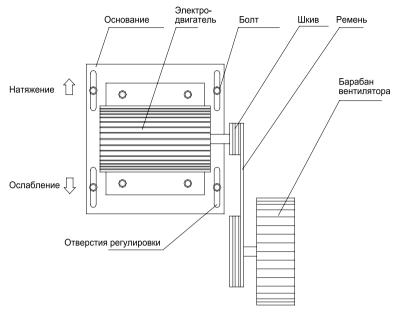



Рис. 9.4

9.3.2 Установка внутреннего блока производится подвесками (4 шт). Запас прочности каждой подвески должен быть таким, чтобы каждая выдерживала четырехкратный вес блока.

9.3.3 Монтаж дренажного шланга


- Для организации слива конденсата из внутреннего блока необходимо через муфту к дренажному отводу подключить дренажный шланг или трубу.
- Дренажная труба должна быть установлена с уклоном по ходу слива.
- С целью свободного слива конденсата и предотвращения доступа неприятного запаха.
 из сливной трубы в помещение необходимо установить водяной затвор в соответствии с рисунком, при этом h≥30 см, x>h/2.
- Соединительная муфта должна быть изолирована теплоизоляционным материалом.

Puc. 9.5

9.3.4 Регулировка ремня привода вентилятора

- Вращение вентилятора обеспечивается ременной передачей.
- Скорость и устойчивость вращения вентилятора зависит от натяжения приводного ремня.
- Регулировку натяжения ремня вентилятора необходимо производить периодически.
- При замене ремня необходимо после суток работы провести дополнительную регулировку натяжения, затем проверить натяжение через неделю эксплуатации.
- Для регулировки натяжения ремня необходимо ослабить болты крепления основания электродвигателя (см. рисунок 9.6). Затем путем перемещения основания с двигателем в соответствующую сторону (см. рисунок 9.7) добиться необходимой величины натяжения и затянуть болты.

Регулировка натяжения ремня привода

Рис. 9.6

• Сила натяжения ремня проверяется тензометром в соответствии с рисунком.

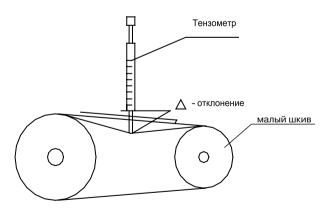
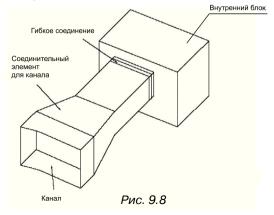
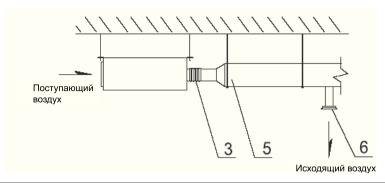


Схема измерения натяжения ремня привода вентилятора

Рис. 9.7

• Значение величины отклонения (Δ) определяется по формуле: $\Delta = L/64$, где L — общая длина ремня.


Значение натяжения ремня при этом должно соответствовать таблице.


Таблица 9.1

Обозначение	Диаметр малого	Сила натяжен	ия при ∆, (Н)
марки ремня	шкива, мм	Min.	Max.
SPA	80-132	25	35
SP7	56-95	13	20
582	100-140	20	25

Внимание! Запрещается запускать кондиционер без подключенных вентиляционных каналов.

- Проектирование и монтаж вентиляционных каналов проводить в соответствии с требованиями нормативной документации.
- При проектировании вентиляционных каналов необходимо обеспечить необходимый уровень вентиляции, низкий уровень шума и вибрации. Необходимо избегать резких изгибов каналов входящего воздуха.
- При использовании внутреннего блока с притоком свежего воздуха, труба воздуховода свежего воздуха должна быть покрыта термоизоляцией и установлен регулятор подачи свежего воздуха.
- При смешивании свежего и рециркулируемого воздуха канал свежего воздуха размещается поверх канала рециркулируемого воздуха.
- Соединения между внутренним блоком и трубами воздуховодов должны быть гибкими.
 Воздуховоды должны быть прочно закреплены на внутреннем блоке
- Источники шумов и воздушные выходы необходимо располагать вдали от людей.
- Рекомендуется использовать вентиляционных решётки защищенные от воздействия конденсата.
- Все воздуховоды должны быть хорошо изолированы с целью исключения утечек тепла и образования конденсата. Поверх изоляционного материала накладывается фольга, а затем монтируется охватывающий крепежный элемент.
- Соединительные элементы воздуховодов должны быть также надёжно изолированы.
- Все воздуховоды должны быть надёжно закреплены металлическими подвесками, жёстко вмонтированными в потолок.
- Типовые схемы подключения вентиляционных каналов в соответствии с рисунками приведенными ниже.

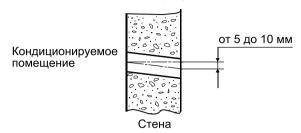
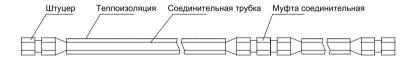

Поз.	Наименование	Поз.	Наименование
1	Подвеска	4	Вентиляционная решетка
2	Входящий воздуховод	5	Выходной воздуховод
3	Гибкая труба воздуховода	6	Распределитель воздуха

Рис. 9.9

10 МОНТАЖ ФРЕОНОВЫХ ТРУБОК

- Все операции по монтажу трубок должны проводиться с использованием специальных инструментов и приспособлений.
- Перед началом монтажа необходимо проверить размер трубок и тщательно просчитать длину трассы.
- Внутренняя поверхность медных соединительных трубок должна быть чистой, без каких-либо загрязнений.
- Количество изгибов трубок при монтаже должно быть сокращено до минимума.
- Радиус гиба трубок должен быть не менее 2d, d внешний диаметр трубки.
- Не допускается замятие трубки в сечении.
- Трубки допускается изгибать в одном и том же месте не более трех раз.
- Для резки трубок необходимо использовать специальный труборез.
- Трубки нельзя отпиливать, поскольку добиться гладкого и перпендикулярного распила трубок невозможно.
- Торцы трубок перед развальцовкой должны быть ровные без заусенцев.
- При необходимости удалить заусенцы на кромке трубки с помощью развертки (риммера).
- Во избежание попадания в трубку металлического порошка при резании конец трубки должен быть направлен вниз.
- Неправильное или неполное удаление заусенцев может вызвать утечку хладагента и привести к неисправности компрессора.
- На медные соединительные трубки должны быть надеты теплоизоляционные трубки.
 При использовании отрезков теплоизоляционных трубок они должны быть склеены по торцам.


 При необходимости проделайте отверстие в стене для прокладывания трассы межблочного соединения в соответствии с рисунком 10.1.

Монтажное отверстие в стене

Рис. 10.1

- Для удобства подключения соединительных трубок используются специальные отводы (фитинги)
- При подключении соединительных трубок пайкой необходимо вставить одну трубку в другую на глубину не менее диаметра внутренней вставляемой трубки. Зазор между стенками трубок должен быть 0,025...0,125 мм.
- Пайку производить нагреванием пламенем горелки с использованием меднофосфорного твердого припоя.
- При удлинении трассы возможно применение межтрубного соединения с использованием соединительной муфты (см. рисунок 10.2)

Соединение труб при удлинении трассы

Рис. 10.2

• Момент затяжки гаек трубопровода кондиционера в соответствии с таблицей.

Таблица 10.1

Диаметр трубки, мм	Момент затяжки, Нм	Диаметр трубки, мм	Момент затяжки, Нм
16	60 — 65	25	80 — 105
19	75 — 85	28	90 — 115
22	85 — 100	35	115 — 120

- Заправка кондиционеров фреоном рассчитана на длину трассы не более 7,5 м.
- При увеличении длины трассы более 7,5 м необходимо производить дозаправку фреона в соответствии с таблицей.

Модель	FGR20/BNa-M	FGR25/CNa-M	FGR30/BNa-M	FGR40/BNa-M
Количество фреона для дозаправки, г/м	54	54	110	170

• Если наружный блок установлен выше внутреннего, то при перепаде высот между блоками более 7 м, необходимо через каждые 6 м на газовой трубе устанавливать маслоподъемные петли (см. рисунок).

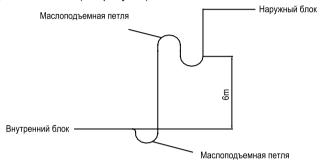
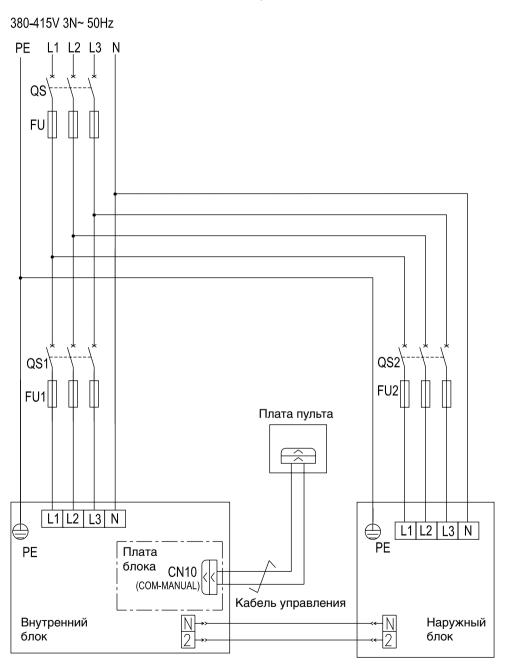
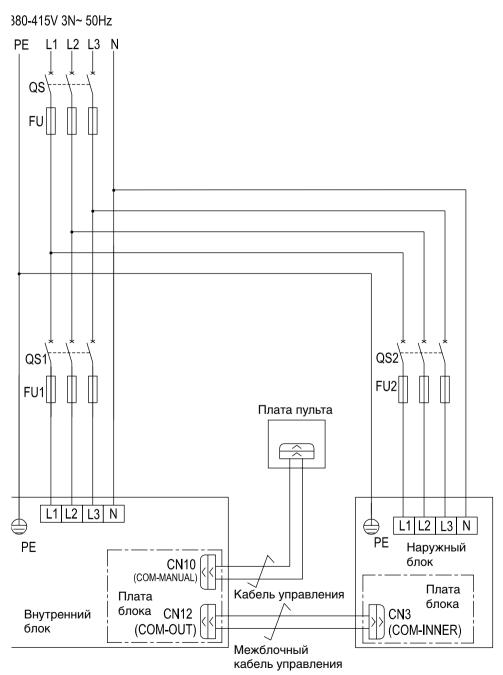


Схема установки маслоподъемных петель

Рис. 10.3


11 Подключение кабелей электропитания и межблочных соединительных кабелей управления

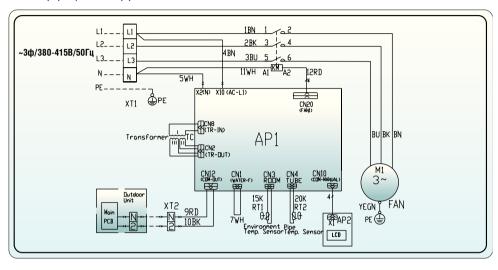
- 11.1 Подключение электрических кабелей проводить в соответствии со схемой подключения и действующими нормативными правилами электробезопасности.
- При подключении к источнику питания необходимо использовать автоматические выключатели с током отсечки не менее 7 Ін (Ін & номинальный потребляемый ток).
- Соединительные трубки, кабель управления и при необходимости дренажная трубка должны быть обернуты монтажной липкой лентой


11.2 Таблица кабелей питания и автоматических выключателей

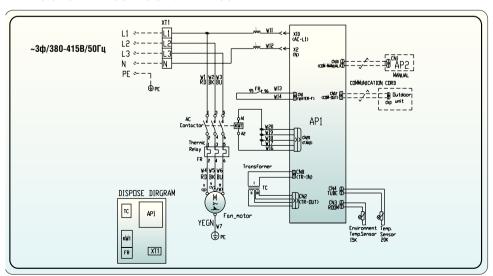
Модель блока	Параметры электропитания	Автоматический вы- ключатель	Кабель электропитания
FGR20/BNa-M(I)			
FGR25/CNa-M(I)	0+/000 44FD/F0F:	10 A	5 х 1,5 мм²
FGR30/BNa-M(I)			
FGR40/BNa-M(I)			
FGR20/BNa-M(O)	~3ф/380-415В/50Гц	25 A	5 х 4,0 мм²
FGR25/CNa-M(O)	GR25/CNa-M(O)		5 x 6,0 мм²
FGR30/BNa-M(O)		40 A	5 v 10 0 · · · · ²
FGR40/BNa-M(O)		40 A	5 x 10,0 мм²

11.3 Схема подключения модели FGR20/BNa-M

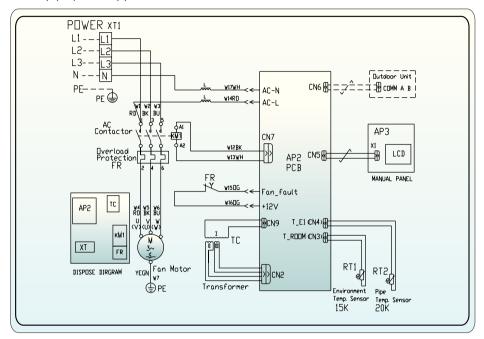
11.4 Схема подключения модели FGR25/CNa-M, FGR30/BNa-M,

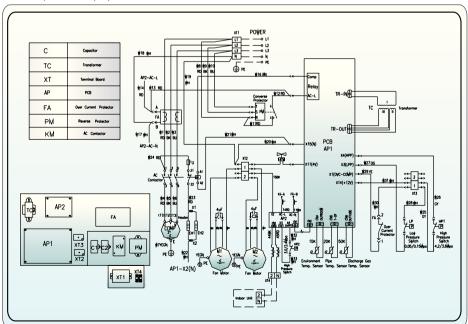

11.5 Схема подключения модели FGR40/BNa-M

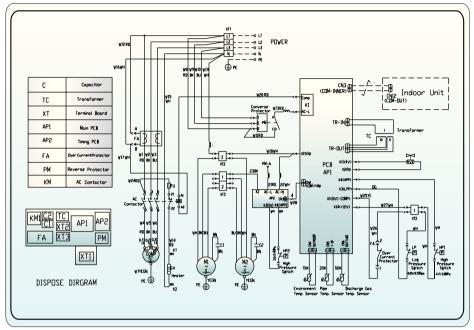
380-415V 3N~ 50Hz L1 L2 L3 N QS' QS1 QS2 FU2 Плата пульта L1 L2 L3 N L1 L2 L3 N PΕ PΕ Наружный блок CN5 Плата Kaбель управления Плата блока блока Внутренний CN6 COMM A B блок Межблочный

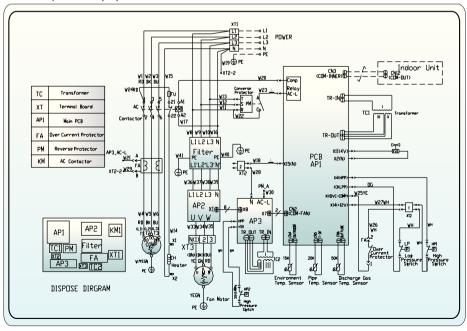

кабель управления

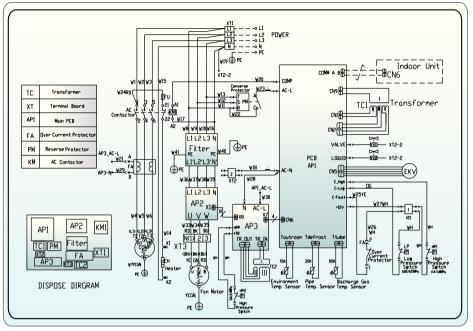
12 СХЕМЫ ЭЛЕКТРИЧЕСКИЕ БЛОКОВ


FG(R)20/BNa-M(I)


FG(R)25/CNa-M(I), FG(R)30/BNa-M(I)


FG(R)40/BNa-M(I)


FGR20/BNa-M(O)


FGR25/CNa-M(O)

FGR30/BNa-M(O)

