

Версия 3.0 Русский

Введение

Покупка

Поздравляем Вас с приобретением инструмента серии FlexLine plus.

В данном Руководстве содержатся важные сведения по технике безопасности, а также инструкции по настройке инструмента и работе с ним. Более подробно об этом читайте в разделе "13 Руководство по безопасности".

Внимательно прочтите Руководство по эксплуатации прежде, чем включить тахеометр.

Идентификация продукта

Модель и заводской серийный номер Вашего инструмента указаны на специальной табличке.

Запишите эти данные в Руководство по эксплуатации и всегда имейте их под рукой при обращении в представительства и службы Leica Geosystems.

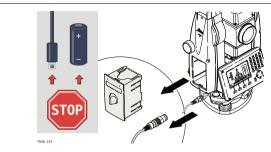
Модель:	
Серийный номер:	

Символы

Используемые в данном Руководстве символы имеют следующий смысл:

Тип	Описание
2.3	Означает непосредственно опасную ситуацию, которая может привести к серьезным травмам или даже к летальному исходу.

Тип		Описание
	редупрежде ие	Означает потенциально опасную ситуацию или нештатное использование прибора, которые могут привести к серьезным травмам или даже к летальному исходу.
♠ ∘	сторожно	Означает потенциально опасную ситуацию или нештатное использование прибора, способные вызвать травмы малой или средней тяжести, либо привести к значительному материальному, финансовому или экологическому ущербу.
		Важные разделы документа, содержащие указания, которые должны неукоснительно соблюдаться при выполнении работ для обеспечения технически грамотного и эффективного использования оборудования.


Торговые марки

- Windows является зарегистрированной торговой маркой корпорации Microsoft Corporation.
- Bluetooth зарегистрированная торговая марка фирмы Bluetooth SIG, Inc. Все остальные торговые марки являются собственностью их обладателей.

Область действия данного руководства

	Описание
Общие сведения	Данное руководство относится ко всем инструментам серии TS02 plus, TS06 plus, и TS09 plus. Отличия для конкретных моделей детально объясняются. Приведенные ниже пиктограммы отмечают то, что относится к конкретной модели: • TS02 plus для TS02 plus • TS06 plus для TS06 plus • TS09 plus для TS09 plus • Измерения на отражатель: При выполнении измере-
эрительная груба	 измерения на отражатель: при выполнении измерений на отражатели (режим "Prism" - "P"), используется широкий красный лазерный луч видимого диапазона, который соосно направлен с оптической осью зрительной трубы. Режимы безотражательных измерений: Инструменты с дальномером EDM, поддерживающим безотражательные измерения, имеют режим "Non-Prism" (NP). При измерениях на отражатель используется узкий красный луч видимого диапазона, который соосно направлен с осью зрительной трубы.

Никогда **не** извлекайте аккумуляторы во время работы прибора или в процесе выключения.

Это может привести к утере данных и системным сбоям!

Выключайте прибор кнопкой On/Off, перед извлечением аккумулятора всегда дожидайтесь полного выключеняи прибора.

Содержание

В этом руководстве

14
1-
10
18
2:
23
2
2
3
33
3
3.
4
4
4
4
4
_

	3.5	Прилож	ение Ускоренная съемка (Q-Survey)	51
	3.6	Измерен	ния расстояний - рекомендации по получению	
		надежн	ых результатов	52
4	Настро	йки		56
	4.1	Рабочие	настройки	56
	4.2	Региона	льные Настройки	59
	4.3	Настрой	ки данных	66
	4.4	Настр. Д	µсплея и Звуков	69
	4.5	HACTPO	РЙКИ EDM	73
	4.6	КОММУ	НИКАЦИОННЫЕ ПАРАМЕТРЫ	81
5	Прило	кения - Прис	ступая к работе	86
	5.1	Общие с	ведения	86
	5.2	Запуск г	приложения	87
	5.3	Настрой	ка проекта	89
	5.4	Установ	ка станции	90
6	Прило	кения		93
	6.1	Описани	іе разделов	93
	6.2	УСТАНО	ОВКА СТАНЦИИ	95
		6.2.1	Запуск приложения УСТАНОВКА СТАН-	
			ции	95

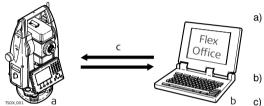
	6.2.2	Измерения на точку	10
	6.2.3	Результаты	10
6.3	Съемка		10
6.4	РАЗБИВКА		11
6.5	БАЗОВАЯ Ј	ЛИНИЯ	11
	6.5.1	Общие сведения	11
	6.5.2	Задание опорной линии	11
	6.5.3	Определение опорной линии	11
	6.5.4	Измер.прод. и попер. сдвига	12
	6.5.5	Разбивка	12
	6.5.6	Подпрограмма СЕТКА	12
	6.5.7	Сегментирование линии	13
6.6	БАЗОВАЯ Д	ДУГА	13
	6.6.1	Общие сведения	13
	6.6.2	Определение опорной дуги	13
	6.6.3	Измер.прод. и попер. сдвига	13
	6.6.4	Разбивка	14
6.7	БАЗОВАЯ І	ПЛОСКОСТЬ	14
6.8	KOCBEHHE	ЫЕ ИЗМЕРЕНИЯ	15
6.9	ПЛОЩАДЬ	И ЦММ-ОБЪЕМ	15
6.10	OTMETKA I	НЕДОСТУПНОЙ ТОЧКИ	16
6.11	COGO		16

6.11.1	Запуск приложения COGO	163
6.11.2	Прямая и обратная задачи	164
6.11.3	Засечки	166
6.11.4	Сдвиги	170
6.11.5	Продление линии	173
Дорога 2D		173
ДОРОЖНЬ	ЫЕ 3D-РАБОТЫ	178
6.13.1	Запуск приложения ДОРОЖНЫЕ	
	3D-РАБОТЫ	178
6.13.2	Терминов иопредлений	180
6.13.3	Создание и загрузка файлов створа	189
6.13.4	Разбивка	192
6.13.5	Проверка	195
6.13.6	Разбивка уклона	198
6.13.7	Проверка уклона	205
Программа	а Ход	207
6.14.1	Общие сведения	207
6.14.2	Запуск и настройка Программы Ход	209
6.14.3	Выполнение измерений по ходу	212
6.14.4	Продолжение работы	216
6.14.5	Завершение хода	218
	6.11.2 6.11.3 6.11.4 6.11.5 Дорога 2D ДОРОЖНЬ 6.13.1 6.13.2 6.13.3 6.13.4 6.13.5 6.13.6 6.13.7 Программа 6.14.1 6.14.2 6.14.3 6.14.4	6.11.2 Прямая и обратная задачи 6.11.3 Засечки 6.11.4 Сдвиги 6.11.5 Продление линии Дорога 2D ДОРОЖНЫЕ ЗD-РАБОТЫ 6.13.1 Запуск приложения ДОРОЖНЫЕ 3D-РАБОТЫ 6.13.2 Терминов иопредлений 6.13.3 Создание и загрузка файлов створа 6.13.4 Разбивка 6.13.5 Проверка 6.13.6 Разбивка уклона 6.13.7 Проверка уклона Программа Ход 6.14.1 Общие сведения 6.14.2 Запуск и настройка Программы Ход 6.14.3 Выполнение измерений по ходу 6.14.4 Продолжение работы

7	Избранное			22
	7.1	7.1 Общие сведения		22
	7.2	Сдвиг ц	ели	23
		7.2.1	Общие сведения	23
		7.2.2	Циллиндрический сдвиг	23
	7.3	Скрыта	я точка	23
	7.4	Провері	ка привязки	23
	7.5	EDM Сл	ежение	24
	7.6	Провері	ка задней точки	24
8	Кодирование			24
	8.1	Кодиро	зание	24
	8.2	Быстры	е коды	24
9	Инстру	/менты		24
	9.1	Уравнивание		24
	9.2	Порядок запуска		24
	9.3	Системная информация		25
	9.4	Лицензионные ключи		25
	9.5	Защита	прибора PIN-кодом	25
	9.6	Загрузк	а ПО	25

10	Управл	ение данными	259
	10.1	МЕНЮ РАБОТЫ С ФАЙЛАМИ	259
	10.2	Экспорт данных	261
	10.3	Импорт данных	267
	10.4	Использование USB-флэшки	271
	10.5	Использование Bluetooth	274
	10.6	Работа с Leica FlexOffice	276
11	Поверк	и и Юстировки	277
	11.1	Общие сведения	277
	11.2	Подготовка	278
	11.3	Юстировка линии визирования и ошибки места нуля	279
	11.4	Юстировка компенсатора	284
	11.5	Юстировка вертикальной оси прибора	286
	11.6	Юстировка круглого уровня тахеометра и трегера	290
	11.7	Поверка Лазерного отвеса тахеометра	291
	11.8	Уход за штативом	293
12	Уход и транспортировка		
	12.1	Хранение	295
	12.2	Транспортировка	295

	12.3	Хранени	e	29
	12.4	Чистка и	сушка	29
13	Руково	дство по бе:	вопасности	29
	13.1	Общие с	ведения	29
	13.2	Допусти	иое применение	29
	13.3	Огранич	ения в использовании	30
	13.4	Ответст	венность	30
	13.5	Риски эк	сплуатации	30
	13.6	Категорі	ıя лазера	30
		13.6.1	Общие сведения	30
		13.6.2	Дальномер, измерения на отражатели	30
		13.6.3	Дальномер, безотражательные измере-	
			ния	31
		13.6.4	Лазерный указатель створа EGL	31
		13.6.5	Лазерный отвес	31
	13.7	Электромагнитная совместимость EMC Федеральная комиссия по связи FCC		32
	13.8			32
14	Технические сведения		32	
	14.1	Угловые измерения		32
	14.2	Дальномерные измерения на отражатели		32


	14.3 Безотражательные измерения		329	
	14.4	дальном	ерные измерения на отражатель (>4.0км)	332
	14.5	Соответс	ствие национальным стандартам	333
		14.5.1	Продукты без коммуникационной панели	333
		14.5.2	Продукты с Коммуникационной панелью	334
	14.6	Общие т	ехнические характеристики прибора	335
	14.7	Пропорц	иональная поправка	342
	14.8	Формуль	і приведения	346
15	Международные ограничения		349	
16	Глоссари	й		351
		Структу	ура меню	
		Структура папок		359
Алфавитный ука		казатель		360

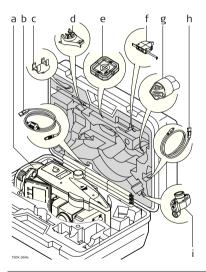
1 1.1

Описание системы

Составляющие системы

Основные компоненты

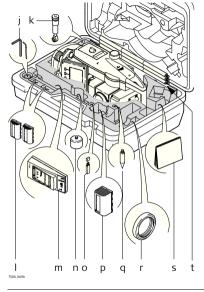
- Taxeoмetpы серии FlexLine plus поставляются со встроенным программным обеспечением FlexField plus
-) Компьютер с установленным ПО FlexOffice
- с) Обмен данными


Компонент	Описание
Тахеометр FlexLine plus	Инструмент для измерений, вычислений и записи данных. Отлично подходит как для обычных съемок, так и для решения более сложных задач. Оснащен встроенным программным обеспечением FlexField plus для решения широкого круга таких задач.
	Различные версии приборов этой серии имеют разную точность и свой набор функциональных возможностей. Все они могут подключаться для камеральной обработки к программе FlexOffice для просмотра, обмена и управления данными.

Компонент	Описание
	Доступны два варианта зрительной трубы. Символы, используемые в данном руководстве:
	📵 Ergofocus (Тип 3)
	🗊 Finefocus (Тип 2)
Встроенное ПО FlexField plus	Этот программный пакет устанавливается на сам прибор. Он включает базовую операционную систему и выбираемый пользователем набор приложений.
Программное обеспечение FlexOffice	Офисный программный пакет, включающий набор утилит и приложений для просмотра данных, постобработки, обмена данными и управления ими.
Обмен данны- ми	Обмен данными между инструментами серии FlexLine plus и компьютером осуществляется с помощью коммуникационного кабеля. Для инструментов, в которых имеется Коммуникационный блок, возможен обмен данными с помощью USB-флэшки, USB-кабелей или через Bluetooth.

1.2

Содержимое контейнера

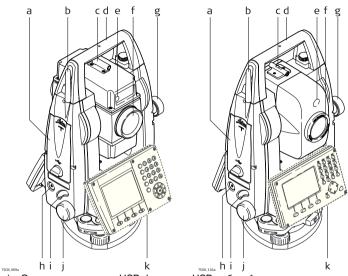

Содержимое контейнера - рис. 1 из 2

- а) Инструмент с трегером
- b) Кабель GEV189 (USB-RS232)*
- c) Съёмный круглый уровень GLI115*
- d) Адаптер GHT196 под рулетку для измерения высоты инструмента*
- e) Плоский отражатель CPR105*
- f) Рулетка GHM007 для измерения высоты инструмента*
- g) Чехол / Бленда* / Салфетка
 -) Кабель GEV223 (USB-mini USB) для инструментов, где есть Коммуникационный блок
- і) Мини-призма GMP111*

* Опции

Содержимое контейнера - рис. 2 из 2

-) Юстировочные приспособления
- k) Насадка диагональная GFZ3*
-) Аккумуляторы GEB211*
- m) Зарядное устройство GKL211*
- n) Адаптер GAD105 для плоских и мини-призм*
- USB-флэшка MS1 Leica для инструментов с Коммуникационным блоком
- р) Аккумулятор GEB221*
- q) Наконечник для вешек мини-призм*
- r) Противовес для использования насадки на окуляр
- s) Руководство по эксплуатации
- t) Мини-вешка GLS115*

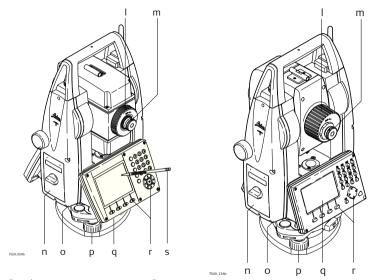

^{*} Опции

1.3

Составляющие инструмента

Компоненты инструмента рис. 1 из 2 Инструмент с 🖭:

Инструмент с 🗐:

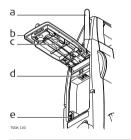

- а) Отсек для хранения USB-флэшки и USB-кабеля*
- b) Антенна Bluetooth*
- с) Оптический визир

- d) Съемная транспортировочная ручка с установочным винтом
- e) Лазерный маячок EGL
- f) Объектив со встроенным дальномером (EDM). Выход лазерного луча
- g) Микрометренный винт вертикального круга
- h) Кнопка включения
- і) Триггер
- і) Микрометренный винт горизонтального круга
- k) Вторая клавиатура*
- * Опции

Компоненты инструмента (продолжение) рис. 2 из 2

Инструмент с

Инструмент с 🖭:



- I) Фокусировочное кольцо объектива
- m) Фокусировочное кольцо окуляра

- n) Крышка аккумуляторного отсека
- о) Порт RS232
- р) Подъемный винт
- q) Дисплей
- r) Клавиатура
- s) Стилус

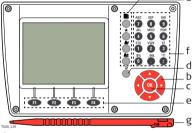
Коммуникационный блок

Коммуникационный блок является опцией для **TS02** *plus* **TS06** *plus* и установлен стандартно на **TS09** *plus*.

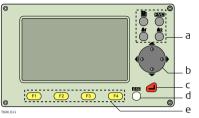
- a) Антенна Bluetooth
- b) Крышка отсека
- c) Крепление для крышки USB-флешки
- d) Порт для USB-флешки
- e) USB-порт инструмента

2

Пользовательский интерфейс Клавиатура


2.1

Клавиатура


Цветная сенсорная клавиатура

Стандартная клавиатура

- а) Фикс. клавиши
- b) Навигатор
- с) Кнопка ENTER
- d) Кнопка **ESC**
- е) Функциональные клавиши **F1 F4**
- f) Алфавитно-цифровая панель
- д) Стилус

Клавиши

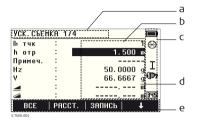
Клавиша		Описание
Ч/Б	ц/с	
	№ На экра- не	Служит для пролистывания страниц. С ее помощью можно переходить от одной страницы окна к другой.
FNG	$\stackrel{\bigstar}{\bigcirc}$	FNC /клавиша "Избранное". Обеспечивает быстрый доступ к операциям измерения.
Č	1	Пользовательская клавиша 1. Ей можно присвоить необходимую функцию из меню Избранное .
Ó	\$2)	Пользовательская клавиша 2. Ей можно присвоить необходимую функцию из меню Избранное .

Клавиша		Описание
Ч/Б	ц/с	
•••	OK >	Навигационная клавиша. С его помощью можно перемещать полоску выбора в пределах окна и курсор в поле ввода.
	OK	Кнопка ENTER Служит для подтверждения операции ввода и перехода к следующему полю на дисплее. При удержании этой клавиши в течении 3 сек. происходит выключение инструмента.
	٥	Кнопка ESC Выход из текущего окна или режима редактирования без сохранения сделанных изменений. Переход к следующему более высокому уровню.
F1, F2, F3, F4	FD, F2, F3, F4	Клавиши, которым прописаны определенные функции. Они показаны в нижней части экрана.
## 6	ABC DEF GHI 2 8 9 34. MAN POR 5 10 4 72 1 2 3 35 - 95 - 77 0 6 2	Алфавитно-цифровая панель для ввода текстовых или цифровых данных.

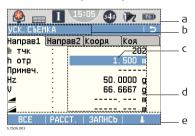
Клавиши на корпусе тахеометра

Клави- ша	Описание
(6)	On/Off. Включение и выключение инструмента.
	Триггер Эту клавишу можно запрограммировать для выполнения функции BCE или PACCT
9	TS06 <i>plus</i> TS09 <i>plus</i> Можно прописать обе функции.
	TS02 <i>plus</i> Можно прописать одну из функций.
	Клавишу Триггер можно запрограммировать в МЕНЮ НАСТРОЕК . Обратитесь к разделу "4.1 Рабочие настройки".

2.2 Дисплей


Дисплей

Инструменты поставляются с черно-белым или с цветным сенсорным дисплеем.


Все экраны дисплеев в данном руководстве являются примерами. В зависимости от установленного системного ПО их вид может быть несколько иным.

Черно-белый экран:

- а) Название окна
- b) Полоска выбора. Активное поле
- с) Иконки статуса
- d) Строки (поля)
- е) Дисплейные клавиши

Цветной сенсорный экран:

-) Иконки статуса
- b) Название окна
- с) Полоска выбора. Активное поле
- d) Строки (поля)
 - е) Дисплейные клавиши

Пиктограммы состояния

Для запуска функции нажмите на иконку, поле или вкладку.

2.3

Описание Эти иконки отра

Эти иконки отражают текущий статус основных функций тахеометра. В зависимости от версии системного ΠO , их состав может быть различным.

Иконки

Иконка		Описание
Ч/Б	ц/с	
<u>A</u>	4	Безотражательный режим для измерений на любые объекты. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙ-КИ EDM .
\otimes		Выбрана стандартная призма Leica. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
3€	③	Выбрана мини-призма Leica. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
⊗∘	® ₀	Выбрана мини-призма Leica с константой 0. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
	W	Выбрана призма Leica 360°. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
<u></u> ZZZ	MINI	Выбрана мини-призма Leica 360°. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .

Иконка		Описание
Ч/Б	ц/С	
MPR	MPR	Выбрана призма Leica 360° MPR122. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
₩		Выбрана отражающая пленка Leica. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
≜ 1 ≜ 2		Выбран пользовательский тип отражателя. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
-		Индикатор процесса измерений. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
-	*	Индикатор лазерного целеуказателя. Для Ц/С: Нажатие иконки открывает меню НАСТРОЙКИ EDM .
I	I	Положение I вертикального круга (например, КЛ). Для Ц/С: Нажатие иконки открывает меню Уровень и Отвес .
I	Ш	Положение II вертикального круга (например, КП). Для Ц/С: Нажатие иконки открывает меню Уровень и Отвес .
		Компенсатор включён. Для Ц/С: Нажатие иконки открывает меню Уровень и Отвес .
X	Ø	Компенсатор выключен. Для Ц/С: Нажатие иконки открывает меню Уровень и Отвес .

Иконка		Описание
Ч/Б	ц/С	
四		Компенсатор вне диапазона компенсации. Для Ц/С: Нажатие иконки открывает меню Уровень и Отвес .
345	345	Панель находится в цифровом режиме. Отображается когда редактируемое поле выделенно. Для Ц/С: Нажатие иконки переключает в алфавитно-цифровой режим.
ABC	ABC	Панель находится в алфавитно-цифровом режиме. Отображается когда редактируемое поле выделенно. Для Ц/С: Нажатие иконки переключает в цифровой режим.
(P)	1	Выбран коммуникационный порт RS232. Для Ц/С: Нажатие иконки открывает меню КОММУНИКАЦИОННЫЕ ПАРА-МЕТРЫ .
8	*	Выбран коммуникационный порт Bluetooth. Если рядом с этой иконкой стоит крестик, это значит, что для связи выбран коммуникационный порт Bluetooth, но он пока неактивен. Для Ц/С: Нажатие иконки открывает меню КОММУ-НИКАЦИОННЫЕ ПАРАМЕТРЫ.
<	• ⟨ •	Выбран коммуникационный порт USB. Для Ц/С: Нажатие иконки открывает меню КОММУНИКАЦИОННЫЕ ПАРА-МЕТРЫ .

Иконка		Описание
Ч/Б	ц/с	
AUTO		Автоматическое определение метода связи. Для Ц/С: Нажатие иконки открывает меню КОММУНИКАЦИОННЫЕ ПАРАМЕТРЫ .
	TS	Пиктограмма батарейки показывает уровень зарядки аккумулятора, в приведенном примере 100%. Для Ц/С: Нажатие иконки открывает меню СИСТЕМНАЯ ИНФОР-МАЦИЯ.
!	\triangle	Режим сдвига активен.
5	-	Индикация настройки измерения горизонтальных углов против часовой стрелки.

2.4 Дисплейные клавиши

Описание

Дисплейные клавиши выбираются нажатием на соответствующие кнопки **F1 - F4**. Далее описаны фунции, которые можно прописать обычным дисплейным клавишам. Возможности использования специальных дисплейных клавиш описаны в соответствующих разделах, посвященных прикладным программам.

Обычные функции дисплейных клавиш

Клавиша	Описание
ДАЛЕЕ	В полях и окошках ввода: Подтверждение результатов измерений или введенных значений и продолжение работы. В окошке сообщений: Подтверждение получения сообщения и продолжение текущих операций, либо возврат в предыдущее окно для внесения изменений.
ПРЕД.	Возврат в предыдущее активное окно.
УМОЛЧ.	Переустановка всех полей редактирования на значения по умолчанию.
PACCT.	Запуск угловых и линейных измерений без записи результатов.
EDM	Просмотр и изменение настроек дальномера EDM. Обратитесь к разделу "4.5 НАСТРОЙКИ EDM".
XYH	Открытие окна ручного ввода координат.
поиск	Поиск заданной точки.
ввод	T502 <i>plus</i> Активизация алфавитно-цифровых дисплейных клавиш для ввода тестовой информации.
список	Вывод на дисплей списка всех доступных точек.
BCE	Запуск угловых и линейных измерений с сохранением результатов.
выход	Выход из текущего окна или приложения.
ЗАПИСЬ	Запись выведенных на дисплей значений.

Клавиша	Описание
ПРОСМО Т	Вывод на дисплей координат и сведений о проекте.
-> ABC	Переключение панели в алфавитно-цифровой режим.
-> 345	Переключение панели в цифровой режим.
1	Переход к следующему уровню дисплейных клавиш.
Ť	Возврат к первому уровню дисплейных клавиш.

2.5

Включение и выключение инструмента

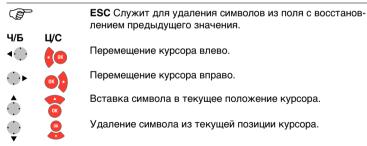
Принцип работы

- Для включения или выключения инструмента, используйте (клавишу On/Off на боковой панели инструмента.
- Кроме того, инструмент можно выключить, удерживая клавишу (в течении 3 сек

Выбор языка

После включения инструмента можно выбрать удобный для пользователя язык интерфейса. Диалоговое окно для выбора языка будет выводится на дисплей только в тех случаях, когда в тахеометр загружены несколько языков, и если в окне Настройки установлено **Выбор языка**: **Вкл.**. Обратитесь к разделу "4.2 Региональные Настройки".

Алфавитно-цифровая панель

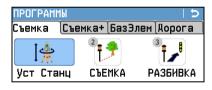

Эта часть клавиатуры служит для ввода символов в поля редактирования.

- Цифровые поля: Они могут содержать только численные величины. При нажатии на кнопку этой панели на дисплее появится соответствующая цифра.
- Алфавитно-цифровые поля: Они могут содержать как числа, так и буквы. При нажатии на кнопку этой панели на дисплее появится первый символ, указанный над нажатой кнопкой. Повторные нажатия на ту же кнопку приводят к появлению других закрепленной за ней символов. Например: 1->S->T->U->1->S....

Стандартная клавиатура

Для ввода как с обычной клавиатуры выберите опцию **ВВОД** и дисплейные клавиши будут работать для ввода алфавитно-цифровых значений в режиме редактирования. Нажмите на соответствующую кнопку для ввода нужного символа.

Редактирование полей



Специальные символы

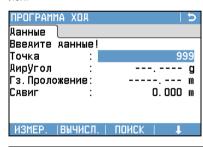
В режиме редактирования положение десятичной точки изменить нельзя. Эта позиция при вводе пропускается.

Символ	Описание	
*	Используется как заместитель любого символа в полях поиска точек или кодов. Обратитесь к разделу "2.6 Поиск точек".	
+/-	В полях редактирования знаки "+" и "-" трактуются как обычные символы, а не как знаки математических операций.	
	"+" / "-" могут появляться только в первой позиции поля.	

В этом примере, выбрав 2 на буквенноцифровой клавиатуре, будет запущена программа СЪЕМКА.

2.6

Описание


Поиск точек

Поиск точки является функцией, которая используется в различных приложениях для быстрого поиска нужных измеренных или твердых точек в памяти.

Можно ограничить диапазон поиска пределами конкретного проекта, либо искать точку по всем записям в памяти. Прежде всего, по заданному критерию ищутся твердые точки, а потом уже измеренные. Если найдено несколько точек, отвечающих заданному критерию поиска, то их список будет упорядочен по дате их последнего ввода или редактирования. Прежде всего, ищутся наиболее "свежие" твердые точки.

Прямой поиск

При задании конкретного номера точки, например 402, после нажатия на **ПОИСК** все точки данного проекта с таким номером будут найдены и выведены на дисплей.

поиск

Поиск точек в пределах выбранного проекта.

XYH=0

Установка координат точек на нулевые значения.

Поиск с неизвестным

Поиск по шаблону имени проводится с применением символа "*". Эта звездочка может замещать любой символ на любой позиции в разыскиваемом имени. Такая

возможность очень полезна в тех случаях, когда полное имя точки неизвестно или забыто, либо при пакетном поиске точек.

Примеры поиска

- Будут найдены все точки.
- А Будут найдены все точки, в названии которых содержится заглавная "А".
- А* Будут найдены все точки, имя которых начинается с "А", например, А9, А15, ABCD, A2A.
- *1 Будут найдены все точки, содержащие в своем имени "1, например, 1, A1, AB1
- A*1 Будут найдены все точки, имя которых начинается с "A" и содержит "1", напрмер, A1, AB1, A51.

2.7

Графические символы

Графические символы

Отображаются на дисплее в некоторых программах. Отображаются на графическом дисплее

- для быстрого и удобного поиска точки при выносе.
- для лучшего понимания того, как ведется процесс съемки.

Элемент	Описание	
8	Точка для выноса / Опорная точка	
= / =	Инструмент	

Элемент	Описание
Ī	Текущее положение отражателя (измерения в режиме РАССТ.)
1/4	Смещение точки вперед/назад
(Смещение точки вправо/влево
/	Смещение точки по высоте
✓	Совпадение выносимой точки с проектным положением. Разница между выносимой точкой и проектным положением ≤ 0.03 м.
	Мишень, с радиусом 0.5 м, обеспечивающая наглядность при выносе
A	Твердая точка
×	Центр дуги или окружности
•	Измеренная точка
	Точка плоскости

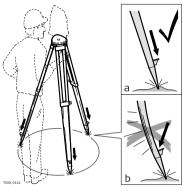
Элемент	Описание
⊕	Новая точка
-	Опорная линия/дуга направленная от начальной точки до конечной точки кривой или спирали
	Продление опорной линии/дуги кривой или спирали
	Перпендикуляр до опорной линии/дуги кривой или спирали
	Граница полигона
	Линия между первой и последней точкой полигона
	Ограничивающая структурная линия
	Структурные линии поверхности

3 Работа

3.1 Установка прибора


Описание

Далее рассмотрены действия по установке тахеометра над закрепленной на местности точкой с помощью лазерного отвеса. Установить тахеометр в произвольном месте, конечно, труда не составляет, и для этого отвес не требуется.

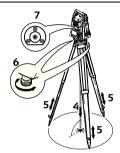

- Защищайте тахеометр от прямых солнечных лучей во избежание общего перегрева и одностороннего нагрева.
- Лазерный отвес, рассматриваемый в этом разделе, встроен в ось вращения тахеометра. Отвес проецирует красную точку на поверхность земли, что значительно облегчает центрирование тахеометра.
- Если трегер имеет оптический отвес, то использовать лазерный отвес не удастся.

Штатив

При установке инструмента старайтесь обеспечивать близкое к горизонтальному положение головки штатива. Небольшие коррекции при этом могут быть сделаны с помощью подъемных винтов подставки. Если наклон слишком велик, то изменяйте соответствующим образом выдвижение ножек штатива.

Слегка отпустите винты фиксации длины ножек штатива, и выдвиньте ножки на нужную длину и затяните винты.

- проверьте, чтобы ножки штатива были заглублены в землю.
- b) Прикладывать усилие к ножкам штатива нужно вдоль их длины.


Уход за штативом.

- Проверяйте надежность всех винтов и болтов штатива.
- При транспортировке обязательно используйте чехол.
- Используйте штатив только по его штатному назначению.

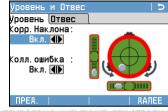
Поэтапные операции

TSOX_013

- 1. Выдвиньте ножки штатива на удобную для вас длину. Установите штатив в более-менее центрированное положение над твердой точкой.
- 2. Установите на штатив тахеометр с трегером в надежном положении.
- Включите инструмент. Если компенсатор в положении Вкл., то лазерный отвес включится автоматически, а на дисплее появится окно Уровень и Отвес. В других ситуациях нажмите на кнопку FNC в этом приложении выберите УРОВЕНЬ.
- Изменяя положение ножек штатива (1) и вращая подъемные винты (6) наведите пятно лазерного отвеса (4) на точку на земле.
- 5. Работая ножками штатива (5), приведите в нульпункт круглый уровень (7).

- 6. Вращением подъемных винтов (6), точно отгоризонтируйте тахеометр по электронному уровню (7). Обратитесь к разделу "Горизонтирование с помощью электронного уровня".
- Точно отцентрируйте тахеометр над точкой, передвигая трегер по головке штатива (2).
- 8. Повторите шаги 6. и 7. до достижения точного центрирования и нивелирования тахеометра.

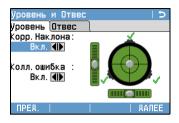
Горизонтирование с помощью электронного уровня


Электронный уровень предназначен для точного горизонтирования тахеометра с помощью подъемных винтов подставки.

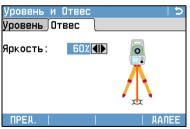
- Поверните инструмент так, чтобы ось вращения трубы была параллельна двум подъемным винтам.
- 2. Приведите в нульпункт круглый уровень с помощью подъемных винтов.
- 3. Включите инструмент. Если компенсатор в положении Вкл., то лазерный отвес включится автоматически, а на дисплее появится окно **Уровень и Отвес**. В других ситуациях нажмите на кнопку **FNC** в этом приложении выберите **УРОВЕНЬ**.

"Пузырек" электронного уровня и стрелки, указывающие нужное направление вращения подъемных винтов появятся на дисплее, если наклоны инструмента находятся в допустимых пределах.

 Приведите электронный уровень в нульпункт по первой оси,вращая два подъемных винта. Стрелки подсказывают направление для вращения подъемных винтов. Первая ось отгоризонтирована, когда пузырек расположен между квадратными скобками [] соответствующего оси цилиндра.

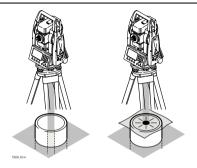

Когда электронный уровень будет приведен в нульпункт, эти стрелки будут заменены галочками. Для цветного сенсорного дисплея: Если прибор неотгоризонтирован по одной оси, то контур круглого уровня и цилиндрических уровней выделяется красным, в противном случае контур черный.

 Приведите электронный уровень в нульпункт по второй оси, вращая третий подъемный винт. Стрелка подскажет нужное направление его вращения.


Появление трех галочек на дисплее означает, что инструмент точно отгоризонтирован.

6. Нажмите ДАЛЕЕ.

Изменение яркости лазерного отвеса


Уровень освещенности на месте работ и тип поверхности на точке установки инструмента могут потребовать регулировки яркости лазерного луча отвеса.

В окне **Уровень и Отвес** для изменения яркости лазерного отвеса используйте навигационную клавишу.

Изменение его яркости производится шагами по 20%.

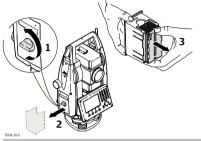
Центрирование над вертикальными трубами и колодцами

В некоторых случаях лазерное пятно отвеса не может быть видимым, например, при центрировании тахеометра над вертикальными трубами. В этой ситуации можно использовать прозрачную пластину для проектирования на нее луча лазерного отвеса и приведения его направления на геометрический центр трубы или колодца.

3.2

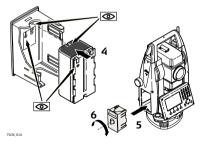
Эксплуатация аккумулятора

Первая зарядка аккумулятора


- Аккумуляторные батареи следует полностью зарядить до их первого использования в работе, поскольку они поставляются при минимальном уровне зарядки.
- Новые или долго (более трех месяцев) хранившиеся без подзарядки аккумуляторы следует пропустить через однократный цикл полной разрядки и зарядки.

- Этот цикл следует проводить при температуре от 0°C до +40°C. Рекомендуемая оптимальная температура зарядки: +10°C до +20°C.
- Нагрев батарей во время их зарядки является нормальным эффектом. При использовании зарядных устройств, рекомендуемых Leica Geosystems, слишком высокий нагрев аккумулятора приведет к автоматической остановке процесса зарядки.

Эксплуатация / разрядка


- Аккумуляторы могут использоваться при температурах от -20° до +50°С.
- Слишком низкие температуры снижают емкость аккумуляторов, а слишком высокие - срок их службы.
- Для литий-ионных (Li-lon) аккумуляторов рекомендуется проводить цикл полной разрядки и зарядки, если на индикаторе зарядного устройства или самой батарейке фирмы Leica Geosystems отмечается сильное отличие от номинальной емкости.

Замена аккумулятора

Откройте батарейный отсек (1) достаньте оттуда кассету с батарейкой (2).

Вытащите батарейку из кассеты (3).

Вставьте другую батарейку в кассету (4) так, чтобы контакты были обращены вверх. Батарейка должна вставляться до щелчка.

Вставьте кассету в батарейный отсек (5) и поверните ручку для его закрытия (6).

Полярность аккумулятора указана внутри кассеты.

3.3

Хранение данных

Описание

На всех тахеометрах этой серии установлена внутренняя память. Встроенное программное обеспечение FlexField plus хранит все данные проектов во внутренней памяти. Оттуда данные могут экспортироваться на компьютер или другое устройство для постобработки через кабель LEMO, подключенный к порту RS232. Для инструментов, на которых установлен коммуникационный блок (Коммуникационный блок), данные из памяти могут также передаваться из внутренней памяти в компьютер или другое устройство через:

- Флэш-карты, вставляемой в порт USB,
- Кабеля USB, подключаемого к USB-порту инструмента
- Bluetooth-соединения.

Обратитесь к разделу "10 Управление данными" для получения более подробной информации об передаче данных и об управлении ими.

3.4

Главное меню

Описание

Главного меню является стартовым окном для доступа к функциональным возможностям инструмента. Оно обычно включается сразу после включения тахеометра или после окна **Уровень и Отвес**.

При необходимости можно сконфигурировать тахеометр так, что после окна Уровень/Отвес открывалось не **ГЛАВНОЕ МЕНЮ**, а какое-либо другое окно. Обратитесь к разделу "9.2 Порядок запуска".

Главного меню

Описание функций Главного меню

Функция	Описание
<mark>†</mark> ∮ Q-съемка	Программа УСК.СЪЕМКА позволяет быстро приступить к съемке. Обратитесь к разделу "3.5 Приложение Ускоренная съемка (Q-Survey)".
Прогр.	Выбор и запуск программ. Обратитесь к разделу "6 Приложения".

Функция	Описание
У правл.	Управление проектами, данными, списками кодов, форматами и файлами в системной памяти или на флэш-карте. Обратитесь к разделу "10 Управление данными".
Г	Экспорт и импорт данных. Обратитесь к разделу "10.2 Экспорт данных".
Настр.	Изменение настроек дальномера EDM, коммуникационных параметров и общих настроек тахеометра. Обратитесь к разделу "4 Настройки".
Инструм	Доступ к средствам поверки и калибровки тахеометра, настройки порядка его включения, изменения PIN-кода, лицензионного ключа и системных сообщений. Обратитесь к разделу "9 Инструменты".

3.5

Описание

Доступ


Приложение Ускоренная съемка (Q-Survey)

После установки и включения тахеометра можно сразу приступать к работе.

Выберите 🛊 🧢 **Q-съемка** в **Главное Меню**.

О-съемка

↓ СТАНЦИЯ

Ввод данных о станции и параметров установки.

I Уст. Hz

Выполнение ориентирования по заданному углу.

↓ Hz ←/Hz →

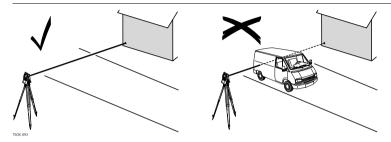
Задание отсчетов горизонтальных углов против часовой стрелки или по часовой стрелке.

↓ код

Поиск или ввод кодов. Обратитесь к разделу "8.1 Кодирование". Доступно на странице 4/4 или Код. Или, на любой странице, нажав FNC и выбрав КОД.

3.6

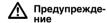
Измерения расстояний - рекомендации по получению надежных результатов


Описание

Лазерный дальномер (EDM) установлен на всех приборах серии FlexLine plus. Во всех прибрах этой серии расстояния измеряются с помощью лазерного луча видимого красного диапазона, который выходит по оптической оси из центра объектива. Есть два режим EDM:

Измерения на отражатели

Безотражательные измерения


Безотражательные измерения

- При запуске дальномерных измерений EDM определяет расстояние до объекта, который в данный момент находится на пути лазерного луча. При возникновении препятствий на пути расспространения луча к объекту, например, проезжающая машина сильный дождь, туман или снег, инструмент может измерить расстояние до такой помехи, а не до нужного объекта.
- Следите за тем, чтобы лазерный луч не попадал на объекты вблизи пути его распространения, например, на сильно отражающие поверхности.
- Это особенно важно в безотражательном режиме и при измерениях на отражающие полоски.
- Не наводите одновременно два инструмента на один и тот же объект.

Измерения на отражатель

- Точные измерения на отражатели должны выполняться на стандартную призму.
- Не выполняйте безотражательные измерения на сильно отражающие объекты, такие как, например дорожные знаки. Такие измерения могут быть очень неточными.
- При запуске дальномерных измерений EDM определяет расстояние до объекта, который в данный момент находится на пути лазерного луча. Если на пути распространения лазерного луча встречаются автомобили, люди, животные или свисающие ветки деревьев, часть принимаемого сигнала будет отражена именно от них, что способно привести к неверным результатам.
- При измерениях на отражатели такие помехи могут оказать влияние на точность результатов только на расстоянии до 30 метров от инструмента при длине определяемого расстояния свыше 300 м.
- Поскольку сам процесс дальномерных измерений занимает очень мало времени, всегда есть возможность поймать момент, когда помех на пути распространения луча не будет.

По технике безопасности работы с лазером, допускается использовать дальномер только для измерений на отражатели на расстояния свыше 1000 м.

Красный лазер и отражатели

 Наблюдения на отражатель в режиме Призма(>4.0 км) позволяют измерять расстояния длинной более 4.0 км на стандартные отражатели с помощью лазерного луча видимого красного диапазона.

Красный лазер и отражающие полоски

- Лазер видимого красного диапазона можно также использоваться для измерений на отражающие полоски. В таких случаях нужно обеспечить попадание луча по перпендикуляру на отражающую полоску, которая должна быть хорошо закреплена на объекте.
- Обязательно проверяйте соответствие заданного значения постоянного слагаемого параметрам используемого отражателя.

4 Настройки

4.1 Рабочие настройки

Доступ

1. Выберите 祸 Настр. в Главное Меню.

2. Выберите рабочие в МЕНЮ НАСТРОЕК.

Рабочие настройки

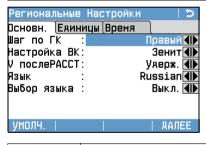
Поле	Описание				
Триггер 1 Триггер 2	1-й триггер - это верхняя часть клавиши триггер, 2-й триггер - это нижняя часть клавиши триггер.				
	Выкл.	Триггер отключен.			
	ВСЕ Придает триггеру функции кнопки ВСЕ.				
	PACCT.	Придает триггеру функции кнопки РАССТ			
Кнопка USER1 Кнопка USER2		ание 🖣 или 👸 функциями из меню Избранное . азделу "7 Избранное".			
Корр.Накло- на	Выкл.	Компенсирование наклона отключено.			

Поле	Описание			
	Вкл.	2-осевая компенсация. Вертикальные углы будут приводиться к положению отвесной линии, горизонтальные углы исправляться за наклон оси вращения инструмента. Для правильного учета поправок, связанных с выбором в строке HzCor ознакомьтесь с таблицей "Поправки за наклон осей инструмента".		
	При установке инструмента на нестабильной площадке, например на палубе корабля, компенсатор необходимо отключить. Это нужно для того, что бы компенсатор не выходил за свой рабочий диапазон и не выдавал постоянно предупреждения о недопустимых наклонах инструмента.			
HzCor	Вкл.	Активизация корректирования горизонтальных углов. Для штатной работы при ориентировании прибора эта опция должна быть включена. Все измеренные горизонтальные углы будут скорректированы с учетом вертикального угла соответствующих направлений. Для правильного учета поправок, связанных с выбором в строке Корр.Наклона ознакомьтесь с таблицей "Поправки за наклон осей инструмента".		

Поле	Описание		
	Выкл.	Отключение коррекции горизонтальных углов.	
Опре.кр.лево	Задание положения вертикального круга относительно зрительной трубы.		
	Кр.лево	При этом выборе "face I" будет считаться кругом лево.	
	Кр.право	При этом выборе "face I" будет считаться кругом право.	

Поправки за наклон осей инструмента

Вари	Варианты		Поправка			
Наклон оси вращения трубы	Поправка в горизон- тальный угол	Продоль- ный наклон	Попереч- ный наклон	Коллима- ционная ошибка	Ось вращения трубы	
Выкл	Вкл	Нет	Нет	Да	Да	
Вкл	Вкл	Да	Да	Да	Да	
Выкл	Выкл	Нет	Нет	Нет	Нет	
Вкл	Выкл	Да	Нет	Нет	Нет	


4.2

Доступ

Региональные Настройки

- 1. Выберите 祸 Настр. в Главное Меню.
- 2. Выберите Регион. в МЕНЮ НАСТРОЕК.
- 3. Нажмите для пролистывания страниц доступных настроек.

Региональные Настройки

УДАЛИТЬ

Для удаления неактивных языков. Доступно когда язык выделяется.

Поле	Описание	
Шаг по ГК	Правый	Отсчет горизонтальных углов по часовой стрелке.

Поле	Описание			
	Левый	Отсчет горизонтальных углов против часовой стрелки. На дисплее отсчеты индицируются как выполненные против часовой стрелки, но записы- ваются как сделанные по часовой стрелке.		
Настройка ВК	Система отсчета вертикальных углов.			
	Зенит	270° 180°	Зенитное расстояние=0°; Верти- кальный угол=90°.	
	Гориз.	180° +45° 0° +45° 0° 180° 180° 180° 180° 180° 180° 180°	Зенитное расстояние=90°; Верти- кальный угол=0°. Вертикальные углы считаются положительными при положении объекта над горизонтом инстру- мента и отрицательными - при его положении ниже этого горизонта.	

Поле	Описание			
	Уклон(%)	45°=100%; Горизонт.=0°. Вертикальные углы выражаются в процентах уклона. Положительными считаются уклоны вверх от горизонтальной плоскости, а отрицательными - уклоны вниз от этой плоскости. Значения процента уклона растут достаточно быстро. Индикация% появляется на дисплее при значениях уклона более 300%.		
V после- PACCT	на экран при на	счета по вертикальному кругу, который выводится нажатии на кнопку РАССТ. или ЗАПИСЬ . Поле й угол всегда содержит текущий угол.		
	Удерж.	В поле вертикальный угол пишется значение отсчета по вертикальному кругу на момент нажа- тия измерения расстояния PACCT		
	Запущено В поле вертикальный угол пишется отсчета по вертикальному кругу на тия кнопки ЗАПИСЬ.		икальному кругу на момент нажа-	

62

Поле	Описание	
		Эта настройка не распространяется на программы КОСВ.ИЗМЕРЕНИЯ или Скрытая точка и Передача Н. Для этих приложений записывается отсчет по вертикальному кругу на момент нажатия кнопки ЗАПИСЬ.
Язык	Выбор интерфейсных языков. В инструмент можно загрузить несколько языков. Здесь показываются загруженные в тахеометр языки. Выбранный интерфейсный язык можно удалить, нажав на УДАЛИТЬ . Эта функция возможна если в инструмент установлено несколько языков и если выбранный язык не задан как системный.	
Выбор языка	Если в тахеометр загружено несколько интерфейсных языков, то при его включении на дисплей выводится окно для выбора одного из них.	
	Вкл. Окно с информацией о языковой поддержке будет показываться при включении прибора.	
	Выкл.	Окно с информацией о языковой поддержке не будет выводиться при включении прибора.
Еди.изм.угл.	Единицы измер ввода.	ения углов для всех соответствующих полей

Поле	Описание	
	0 1 11	Градусы, минуты, секунды. Диапазон значений: от 0° до 359°59'59''
	° и доли	Градусы и доли градусов. Диапазон значений: от 0° до 359.999°
	Грады	Грады Диапазон значений: от 0 до 399.999 гон
	Тысячные	Мил. Диапазон значений: от 0 до 6399.99 мил.
	Выбор угловых единиц может быть изменен в любой момент. Представленные на дисплее значения углов преобразуются в соответствии с выбранными единицами измерений.	
Мин.отсчет	Здесь можно задать число знаков после запятой для всех единиц угловых измерений. Это значение относится только к представлению данных на дисплее и не распространяется на точность записи и экспорта данных.	
	OIII	(0° 00' 0.1"/0° 00' 01"/0° 00' 05"/ 0° 00' 10")
	° и доли	(0.0001 / 0.0005 / 0.001)
	Грады	(0.0001 / 0.0005 / 0.001)
	Тысячные	(0.01 / 0.05 / 0.1)
Еди.изм.рас.	Здесь можно за	адать единицы измерения расстояний и координат.

Поле	Описание	
	Метры	Метры [m].
	Футы США	Футы США [ft].
	МеждФуты	Международные футы [fi].
	Футы/16	Футы США с 1/16 дюймов [ft].
Един. расст	Здесь можно задать число знаков после запятой для всех единиц линейных измерений. Это значение относится только к представлению данных на дисплее и не распространяется на точность записи и экспорта данных.	
	3	Расстояния будут индицироваться с тремя знаками после запятой
	4	Расстояния будут индицироваться с четырьмя знаками после запятой
Температура	Единицы измерения температуры для всех соответствующих полей ввода.	
	℃	Градусы по Цельсию.
	° F	Градусы по Фаренгейту.
Давление	Единицы измерения давления для всех соответствующих полей ввода.	
	hPa	Гектопаскали.

Поле	Описание	
	mbar	Миллибары.
	мм.рт.ст	Миллиметры ртутного столба.
	inHg	Дюймы ртутного столба.
Един.укло- нов	Здесь можно задать, как будут вычисляться градиенты уклона.	
	h:v	Отношение горизонтального проложения к превышению, например, 5 : 1.
	v:h	Отношение превышения к горизонтальному проложению, например, 1 : 5.
	%	(v/h x 100), например, 20%.
Время (24ч)	Текущее время.	
Дата	Показывает пример выбранного формата даты.	
Формат	дд.мм.гггг, мм.дд.гггг или гггг.мм.дд	Как отображается дата во всех строках отображения времени.

4.3

Настройки данных

Доступ

- 1. Выберите настр. в Главное Меню.
- 2. Выберите Данные в МЕНЮ НАСТРОЕК.
- 3. Нажмите для пролистывания страниц доступных настроек.

Настройки данных

Поле	Описание	
Имя двой.тчк	Здесь можно разрешить присвоение одного и того же номера нескольким точкам.	
	Разрешено	Разным точкам можно присваивать один и тот же номер.
	Запрещено	Разным точкам нельзя присваивать один и тот же номер.
Тип сорт-вки	Время	Сортировка выпоняется по времени ввода.
	№ точки	Сортировка выполняется по номерам точек.
Порядок сор.	Нисх.	Выполнение сортировки в нисходящем порядке по выбранному типу.
	Bocx.	Выполнение сортировки в восходящем порядке по выбранному типу.

Поле	Описание			
Код номер	Здесь можно задать, будет ли блок кодов записываться до или после измерений. Обратитесь к разделу "8 Кодирование".			
код	Здесь можно задать, будет ли код использоваться для одного или нескольких измерений.			
	Сброс. после Заданный код будет удален из окна измерений после нажатия на ВСЕ или ЗАПИСЬ.			
	Постоянно	Заданный код будет все время индицироваться на дисплее до его удаления вручную с клавиату- ры.		
Вывод данных	Здесь можно выбрать место хранения данных.			
	В память	Все данные будут записываться в память инструмента.		

Поле	Описание	
	Интерфейс	Данные будут записываться через серийный порт RS232, USB-порт или Bluetooth - в зависимости от выбора в меню КОММУНИКАЦИОННЫЕ ПАРА-МЕТРЫ. Изменение настроек в меню Вывод данных необходимо только в тех случаях, когда внешний накопитель данных подключен к тахеометру и измерения выполняются по нажатию кнопок РАССТ/ЗАПИСЬ или ВСЕ. Эта настройка не нужна, если инструмент управляется с помощью контроллера/регистратора данных.
GSI 8/16	Задание GSI-формата для вывода данных.	
	GSI 8	8100+12345678
	GSI 16	8100+1234567890123456
Маска GSI	Задание GSI-маски для вывода данных.	
	Маска 1	Имя точки, углы Гз и Вт, наклонное расстояние, ppm+mm, hoтp, hинстр.
	Маска 2	Имя точки, углы Гз и Вт, наклонное расстояние, X, Y, H, hoтp.

Поле	Описание	
	Маска З	Идентификатор станции, X, Y, H, hинстр. Идентификатор станции, ее ориентирование, координаты и высота установки инструмента (Результаты привязки) Идентификатор точки и ее координаты (Контр.) Идентификатор точки, горизонтальный и вертикальный углы (Определение дирекционного угла) Идентификатор точки, гориз. и верт. угол на нее, наклонное расстояние, ppm+mm, hотр, координаты

4.4 Настр. Дисплея и Звуков

Доступ

- Выберите 🥌 Настр. в Главное Меню.
- 2. Выберите Дисплей... в МЕНЮ НАСТРОЕК.
- 3. Нажмите для пролистывания страниц доступных настроек.

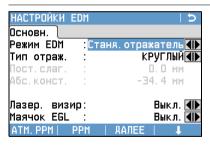
Настр. Дисплея и Звуков

Поле	Описание	
Подс.дисп- лея	От Выкл. до 100%	Установка подсветки дисплея шагами по 20%.
Подсв.клави ш	Доступно только для цветного сенсорного дисплея.	
	Вкл.	Подсветка клавиатуры включена.
	Выкл.	Подсветка клавиатуры выключена.
Подсв.сетки	От Выкл. до 100%	Установка подсветки сетки нитей шагами по 10%.
Актвн. Диспл	Доступно только для цветного сенсорного дисплея.	
	Вкл.	Сенсорный экран включен.
	Выкл.	Сенсорный экран выключен.
		Нажмите Калибр. для калибровки сенсорного экрана. Следуйте инструкции на экране
Подог. дисп	Доступно только для черно-белого дисплея.	
	Вкл.	Подогрев дисплея включен.
	Выкл.	Подогрев дисплея выключен.
		пея включается автоматически при включенной и температуре инструмента ≤ 5°C.

Поле	Описание	
Контраст	От 0% до 100%	Доступно только для черно-белого дисплея. Установка контрастности дисплея шагами по 10%.
Авт.отключ.	Активиз	При выборе этой опции инструмент будет автоматически выключаться, если в течение 20 минут не было никаких операций, например, нажатий на клавиши, либо вращений более $\leq \pm 3$ ".
	Отключ	Автоматическое отключение неактивно.
		Быстрая разрядка аккумулятора.
Экр.заставка	После 1 мин,После 2 мин,После 5 мин,После 10 мин	Экранная заставка активируется и начинает работать после заданного временного интервала.
	Выкл.	Экранная заставка выключена.
Звук. Сигнал	Это акустический сигнал, который выдается при нажатии на кнопки.	
	Норм.	Нормальная громкость.
	Громкий	Повышенная громкость.
	Выкл.	Бип отключен.

Поле	Описание	
СектБип	Вкл.	Этот звуковой сигнал раздается при отсчетах по горизонтальному кругу в 0°, 90°, 180°, 270° или 0, 100, 200, 300 gon.
		90° 1)Без бипов. 2)Бип в секторах 95.0 - 99.5 град и 105.0 - 100.5 град. 3)Бип в секторах 99.5 - 99.995 град и 100.5 - 100.005 град.
	Выкл.	Секторный бип отключен.
Разбивка Сигнал	Вкл.	Прибор подает звуковой сигнал когда расстояние межту текущим положением отражателя и проектным положением точки ≤ 0.5 м. Чем ближе отражатель к проектному положению точки, тем чаще подается звуковой сигнал.
	Выкл.	Бип отключен.

4.5 **НАСТРОЙКИ EDM**


Описание

Настройки в этом окне определяют режим работы EDM - **E**lectronic **D**istance **M**easurement. Можно выбрать режимы для работы EDM без отражателя (NP) или с отражателем (P).

Доступ

- 1. Выберите Настр. в Главное Меню.
- 2. Выберите ЕВМ в МЕНЮ НАСТРОЕК.

НАСТРОЙКИ ЕДМ

ATM.PPM

Ввод значения атмосферной рртпоправки.

PPM

Ввод значения индивидуальной ррт-поправки.

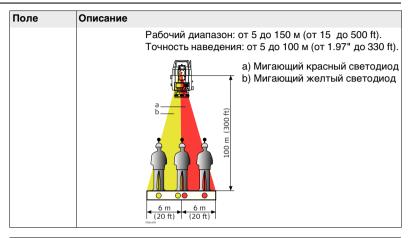
■ МАСШТАБ

Ввод масштабных параметров проекции.

↓ СИГНАЛ

Индикация силы отраженного сигнала.

↓ ЧАСТ.


Индикация рабочей частоты дальномера EDM.

Поле	Описание	
Реж.EDM	Станд.отра- жатель	Высокоточные измерения на отражатель.
	Ст.безотр.р ежим	Дальномерные безотражательные измерения.
	Ст.реж.трек инга	Непрерывные безотражательные измерения.
Призма(>4.0 км)		Измерение больших расстояний на отражатель. Доступно для инструментов с 📻 дальномером.
	Быстр.режи м	Режим быстрых измерений на отражатель с пониженной точностью.
	Режим трекинга	Непрерывные измерения на отражатель
	Отр.пленка	Измерение расстояний на отражающий элемент.

Поле	Описание			
	FlexPoint	Имеется в TS06 <i>plus</i> и TS09 <i>plus</i> . Опция для TS02 <i>plus</i> . Позволяет выполнять измерения коротких расстояний, до 30 метров, в безотражательном режиме.		
Тип отража- теля	КРУГЛЫЙ	48 9 9 9 9	Стандартный отражатель GPR121/GPR111 Пост.слаг.: 0.0 мм	
	МИНИ Mini0°(GMP1 11-0)	30 40	GMP111 Пост.слаг.: +17.5 мм GMP111-0 Пост.слаг.: 0.0 мм	
	JPMINI	Минипризма	Пост.слаг.: +34.4 мм	
	360°	86 64 78	GRZ4/GRZ122 Пост.слаг.: +23.1 мм	

Поле	Описание		
	360°MINI	15 15 15 100 100	GRZ101 Пост.слаг.: +30.0 мм
	ПЛЕНКА		Пост.слаг.: +34.4 мм
	360°	_	MPR122
	(MPR122)		Пост.слаг.: +28.1 мм
	Без отр.	Без отражателя	Пост.слаг.: +34.4 мм
	ПОЛЬЗ.1/ ПОЛЬЗ.2	Пользователь может задать использование двух типов своих отражателей. Постоянное слагаемое может вводится в мм в с ках Пост.слаг. или Абс.конст. . Например:	
		Постоянное слагае мое пользовательского отражателя Пост.слаг. Абс.конст.	= +4.4 MM (34.4 + -30 = 4.4)

Поле	Описание				
Пост.слаг.	В этом поле показывается постоянное слагаемое отражателей Leica для выбранного в строке Тип отражателя типа отражателя. Если в строке Тип отражателя выбран вариант ПОЛЬЗ.1 или ПОЛЬЗ.2 то это поле становится доступным для ввода и редактирования постоянного слагаемого. Значение должно вводиться в мм. Пределы: от -999.9 мм до +999.9 мм.				
Абс.конст.	В этом поле показывается абсолютное постоянное слагаемое для выбранного в строке Тип отражателя варианта. Если в строке Тип отражателя выбран вариант ПОЛЬЗ.1 или ПОЛЬЗ.2 то это поле становится доступным для ввода и редактирования постоянного слагаемого. Значение должно вводиться в мм. Пределы: от -999.9 мм до +999.9 мм.				
Лазер. визир	Выкл.	Выкл. Лазерный визир отключен.			
	Вкл.	Лазерный визир включен.			
Маячок EGL	Выкл. Маячок отключен.				
	Вкл.	Маячок включен. С его помощью реечник может узнавать, в каком направлении ему нужно перемещать отражатель. Радиус видимости маячка составляет до 150 метров. Эта возможность очень полезна при выносе проектов в натуру.			

НАСТРОЙКИ EDM -Введите атмосферные данные! В этом окне можно вводить параметры состояния приземной атмосферы. Эти параметры напрямую влияют на точность выполнения линейных измерений. Для учета этого влияния измеренные расстояния корректируются атмосферными поправками.

Поправка за рефракцию вводится в измеренные превышения и в горизонатльные проложения. Обратитесь к разделу "14.7 Пропорциональная поправка", где описано применение значений, введенных в данном окне.

Если выбран вариант **PPM=0**, то будут приниматься используемые Leica атмосферные стандарты: 1013.25 мбар, 12°C и 60% относительной влажности.

НАСТРОЙКИ EDM - Ввод масштаба проекции

В этом окне можно задать параметры используемой картографической проекции. Координаты корректируются на основе PPM-параметров. Обратитесь к разделу "14.7 Пропорциональная поправка", где описано применение значений введенных в этом окне.

НАСТРОЙКИ EDM -Ввод индивид. PPM

В этом окне можно задавать конкретные значения параметров, отличные от стандартных. Координаты и расстояния будут корректироваться согласно введенным значениям РРМ-параметров. Обратитесь к разделу "14.7 Пропорциональная поправка", где описано применение значений введенных в этом окне.

НАСТРОЙКИ EDM -УРОВЕНЬ ОТРА-ЖЕННОГО СИГНА-ЛА

Это окно позволяет тестировать уровень принятого отраженного сигнала с индикацией шагом в 1%. С помощью такой информации можно оптимизировать наведение на удаленные и плохо видимые объекты. Графический индикатор и звуковой сигнал помогают судить о мощности принятого отраженного сигнала. Чем чаще раздается звуковой сигнал, тем выше мощность принятого сигнала.

Применение ppm

Основное применение

Применение	Геом.ррт	Атмос. ppm	Индивид. ppm
Наклонное расстояние	Не применяется	Применяется	Применяется
Горизонтальное проложение	Не применяется	Применяется	Применяется
Координаты	Применяется	Применяется	Применяется

Исключения

- Программа РАЗБИВКА
 Величина геометрической редукции используется при вычислении и отображении горизонтального смещения точки, от проектного положения, при выносе в натуру.
- Данные LandXML
 При импорте и использовании измерений в LGO записанные в LandXML расстояния отличаются от расстояний в инструменте.

Применение	Геом. ppm	Атмос. ppm	Индивид. ppm	ppm tag
Наклонное рассто- яние	Не применяет- ся	Применяется	Не применяет- ся	Доступно

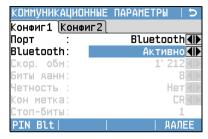
Применение	Геом. ppm	Атмос. ppm	Индивид. ppm	ppm tag
Горизонтальное проложение	Применяется	Применяется	Применяется	Недоступно
Координаты	Применяется	Применяется	Применяется	Недоступно

4.6

КОММУНИКАЦИОННЫЕ ПАРАМЕТРЫ

Описание

Для успешного обмена данными необходимо установить на инструменте коммуникационные параметры.


Доступ

рите 🚁 Настр. в Главное Меню.

2. Выберите Связь в МЕНЮ НАСТРОЕК.

1.

КОММУНИКАЦИОН-НЫЕ ПАРАМЕТРЫ

PIN BIt

Установка PIN-кода Bluetoothсоединений.

Эта кнопка доступна только для инструментов с коммуникационным блоком. По умолчанию этот код '0000'.

умолч.

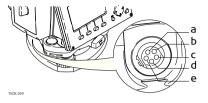
Возврат значений всех полей на стандартные настройки Leica по умолчанию. Доступно для **RS232**.

Поле	Описание			
Порт :	коммуникацион Если же коммун	ный порт инструмента. Если в тахеометре есть ный блок, то доступны разные варианты для выбора. икационный блок на Вашем тахеометре не установится только строка RS232 без возможности редакти-		
	RS232 Связь через последовательный порт. USB Связь через хост-порт USB.			

Поле	Описание	
	Bluetooth	Связь с помощью Bluetooth.
	Автоматичес- ки	В этом варианте система будет автоматически задавать коммуникационный порт.
Bluetooth:	Активно	Bluetooth активизирован.
	Неактив.	Bluetooth отключен.

В варианте **Порт : RS232** откроются следующие поля.

Поле	Описани	9				
Скор. обм:		Скорость обмена данными между тахеометром и подключенным к нему устройством в битах в секунду.				
	1'212, 2'4 Topcon, \$	12, 4'812, 9'612, 14'412, 19'212, 38'412, 57'612, 115'212, Sokkia				
Биты данн:	Число бит в блоке цифровых данных.					
	7	При обменах будут использоваться 7 битов данных.				
	8	При обменах будут использоваться 8 битов данных.				
Четность :	Четност ь	Четност Четность. Применимо при выборе 7-битных обменов.				
	Нечетн.	Нечетность. Применимо при выборе 7-битных обменов.				


Поле	Описани	е			
	Нет	Без контроля четности. Применимо при выборе 8-битных обменов.			
Кон метка:	CR/LF	/LF Перевод каретки и переход к следующей строке.			
	CR	Это символ только перевода каретки по окончании строки.			
Стоп- биты: 1		Число бит в конце блока цифровых данных.			
Подтвержд :	Вкл.	Записи устройства после получения данных. Если запись не получена, будет ведено сообщение об ошибке.			
	Выкл.	После передачи данных не требуется ожидать подтверждения.			

Стандартные настройки Leica

При нажатии на **УМОЛЧ.** все параметры связи будут переустановлены на стандартные настройки Leica:

• 115200 Бод, 8 Бит, Четность Нет, CR/LF Конец строки, 1 Стопбит.

Интерфейс для внешних подключений

- а) Внешний аккумулятор
- о) Нет подключения/неактивно
- c) GND (земля)
- d) Прием данных (TH_RXD)
-) Передача данных (TH_TXD)

5 5.1

Приложения - Приступая к работе

Описание

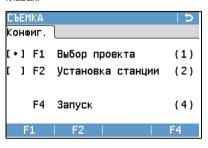
Общие сведения

Приложения являются готовыми программными модулями, позволяющими решать широкий круг задач и позволяет облегчить выполнение работ в поле. В Вашем распоряжении имеются следующие прикладные программы для инструментов серии FlexLine plus, хотя для конкретного прибора их состав может отличаться от показанного ниже:

Программа	TS02 plus	TS06 plus	TS09 plus
УСТАНОВКА СТАНЦИИ	✓	✓	✓
СЪЕМКА	✓	✓	✓
РАЗБИВКА	✓	✓	✓
БАЗОВАЯ ЛИНИЯ	✓	✓	✓
БАЗОВАЯ ДУГА	Опция	✓	✓
БАЗОВАЯ ПЛОСКОСТЬ	Опция	✓	✓
КОСВ.ИЗМЕРЕНИЯ	✓	✓	✓
COGO	Опция	✓	✓
ПЛОЩАДЬ И ЦММ- ОБЪЕМ	✓	✓	✓

Программа	TS02 plus	TS06 plus	TS09 plus
ОТМЕТКА НЕДОСТУП- НОЙ ТОЧКИ	✓	✓	✓
ДОРОЖНЫЕ 2D-РАБОТЫ	Опция	✓	✓
ДОРОЖНЫЕ 3D-РАБОТЫ	Пока недоступно	Опция	✓
ПРОГРАММА ХОД	Пока недоступно	Опция	✓

В разделах, посвященных прикладным программам, описаны только кнопки, которые относятся к конкретному приложению. Обратитесь к разделу "2.4 Дисплейные клавиши" где дано общее описание обычных кнопок.


5.2 Запуск приложения

Доступ

- 1. Выберите прогр. в Главное Менб.
- 2. Нажмите для пролистывания страниц доступных приложений.
- Нажмите на кнопку (для черно-белого дисплея) или на иконку (для цветного сенсорного дисплея) для выбора определенного приложения в ПРОГРАМ-МЫ меню.

Предварительные настройки окон

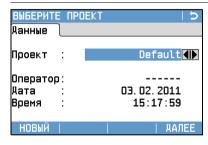
Настройки по умолчанию для приложения СЪЕМКА показаны в качестве примера. Настройки для других прикладных программ объясняются в соответствующих главах.

- [•] = Настройка выполнена.
 [] = Настройка не выполнена.
 F1-F4
 - Клавиши предназначены для выбора нужного пункта меню.

Поле	Описание
F1 Выбор проекта	Служит для определения проекта, в который будут записываться данные. Обратитесь к разделу "5.3 Настройка проекта".
F2 Установка станции	Служит для определения координат точки стояния и ориентирования. Обратитесь к разделу "5.4 Установка станции".
F4 Запуск	Запуск выбранного приложения.

5.3

Настройка проекта


Описание

Все данные хранятся в проектах, как в директориях файлов. Проекты содержат данные различного типа, например, результаты измерений, коды, координаты твердых точек или станций. Проекты можно экспортировать, редактировать или удалять.

Доступ

Выберите **F1 Выбор проекта** в окне **Конфиг.**.

Выбор пр-та

новый

Создание нового проекта.

Поле	Описание	
Проект	Имя проекта для использования.	
Оператор	р Имя оператора.	
Дата	Дата создания выбранного проекта.	

Поле	Описание
Время	Время создания выбранного проекта.

Следующий шаг

- Либо нажмите ДАЛЕЕ для продолдения работы с выбранным проектом.
- Или нажмите НОВЫЙ для перехода в окно Введите имя проекта и создайте новый проект.

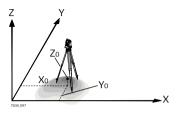
Регистрация данных

После настройки проекта все полученные в ходе работы с ним данные будут записываться в него.

Если проект не был задан или выбран, а приложение уже было запущено, либо в режиме **Q-съемка** было записано хотя бы одно измерение, то автоматически будет создан новый проект с именем "Default".

Следующий шаг

Нажмите ДАЛЕЕ для подтверждения выбора проекта и возврата в окно Конфиг..


5.4

Установка станции

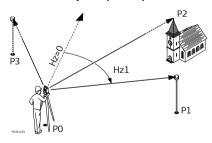
Описание

Все измерения и вычисления координат выполняются на основе заданной ориентировки инструмента на станции.

Вычисление координат станции (точки стояния)

Направления

X на восток Y на север


Z по вертикали (отметка)

Координаты станции

X0 станции Y0 станции

Z0 отметка станции

Вычисления угла ориентирования станции

Р0 Точ

Точка установки инструмента (станция)

Исходные данные

Р1 Координаты точки Р2 Проектная точка Р3 Точка визирования

Вычисления

Hz1 Ориентировка станции

Доступ

Выберите F2 Установка станции в окне Конфиг..

Следующий шаг

Запуск приложения УСТАНОВКА СТАНЦИИ. Обратитесь к разделу "6.2 УСТАНОВ-КА СТАНЦИИ" для получения более подробной информации о процессе УСТАНОВ-КА СТАНЦИИ.

Если установка на станции не была выполнена,а приложение было запущено, то в качестве текущей станции будут приняты настройки предыдущей установки прибора.

6 6.1

Приложения

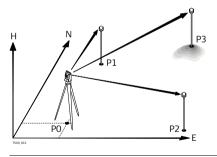
Описание разделов

Описание разделов

В приведенной ниже таблице описаны поля, которые присутствуют во всех диалоговых окнах приложений. Эти поля описаны только в данной главе и в главах, посвященных конкретным приложениям, рассматриваться не будут, за исключением тех случаев, когда какой-либо диалог имеет особый смысл для конкретного приложения.

Поле	Описание		
N тчк, Точка, Точка 1	Идентификатор точки.		
h отр	Высота отражателя.		
Примечание/Код	Комментарий или имя кода - в зависимости от метода кодировки. Для кодировки предусмотрено три способа		
	• Кодировка с комментариями: Текст комментария записывается вместе с соответствующим измере- нием. Такой код не связан со списком кодов, - это просто комментарий. Наличие списка кодов необя- зательно.		

Поле	Описание		
	 Кодирование с применением списка кодов: Нажмите		
Hz	Горизонтальное направление на точку.		
V	Вертикальный угол на точку.		
₫	Горизонтальное проложение до точки.		
4	Наклонное расстояние до точки.		
⊿ I	Разность отметок.		
Υ	Координата Ү точки (на восток).		
Х	Координата X точки (на север).		


Поле	Описание
Н	Высотная отметка точки.

6.2 6.2.1

Описание

УСТАНОВКА СТАНЦИИ Запуск приложения УСТАНОВКА СТАНЦИИ

УСТАНОВКА СТАНЦИИ - приложение, запускаемое для определения координат станции и ориентирования прибора на точке стояния. Точка стояния может определяться максимально по 10 опорным точкам.

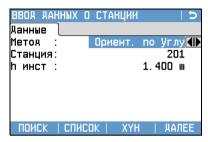
- Р0 Точка установки инструмента (станция)
- Р1 Точка с известными координатами
- P2 Точка с известными координатами
- Р3 Точка с известными координатами

Способы установки

Возможно установление точки стояния следующими способами:

Метод установки	Описание
Ориентирование по углу	Координаты станции известны. Требуется выполнить ориентирование на заднюю точку.
Ориентирование по координа- там	Координаты станции и задней точки известны. Требуется выполнить ориентирование на заднюю точку.
Передача Н	Координаты станции известны, новая высота станции должна быть вычислена. Производятся измерения на одну или несколько точек и расчитывается новая высота станции.
Засечка	Координаты станции неизвестны. По результатам измерений на две или большее число точек расчитываются координаты станции и ориентирование. Возможность настройки масшатба.
Засечка по Гельмерту	Координаты станции неизвестны. По результатам измерений на две или большее число точек расчитываются координаты станции и ориентирование. Измеренные углы и расстояния осредняются опираясь на координаты местной или глобальной системы координат.

Метод установки	Описание	
	2D трансформация по Гельмерту использует четыре (смещение по х, по у, вращение и масштаб) или три (смещение по х, по у, вращение) параметра, в зависимости от установленного масштаба. Точки могут быть заданы как по координатам, высоте или координатам и высоте.	
Засечка локальная	Координаты станции неизвестны. Измерение расстояний до двух точек:	
	 До начала системы координат (X = 0, Y = 0, H = 0) 	
	 До точки задающей направление оси X или Y 	
	Масштаб и СКО не вычисляется.	


Каждый способ оперирует разными исходными данными и требует разное число исходных точек.

Доступ

- 1. Выберите Прогр. в Главное Меню.
- 2. Выберите уСТАНОВКА СТАНЦИИ в ПРОГРАММЫ меню.
- 3. Выбор проекта. Обратитесь к разделу "5.3 Настройка проекта".
- 4. Выберите F2 Настройки:

- Установите точность определения планового положения, высоты, ориентирования в плане и разность отсчетов круг лево/круг право. Для Локальн. Засечка задайте направление на север или направление на восток. Для Засечка Гельмерта установите взвешенное растояние, которое используется для вычисления высоты станции в ОБР.ЗАС.. Установите Выч.Нов.Масш-6: ДА для расчета масштаба для методов ОБР.ЗАС. и Засечка Гельмерта. Тогда масштаб будет установлен после выполнения программы Засечка. Измеренные расстояния всегда редуцируются с установленным в приборе масштабом. Для получения результатов при вычислении масшатаба в программе Засечка, установите значение Масштаб РРМ а меню НАСТРОЙКИ ЕDМ равное нулю.
- Нажмите ДАЛЕЕ для сохранения и возврата в меню ОРИЕНТ..
- 5. Выберите **F4 Запуск** для запуска приложения.

ВВОД ДАННЫХ О СТАНЦИИ

- 1. Выберите нужный способ определения точки стояния
- Введите имя станции или нажмите ПОИСК или СПИСОК для выбора точки. Если введенное имя станции не найдено в текущем проектк, то появится окно ПОИСК ТОЧКИ. Выберите другой проект или нажмите ХҮН для ввода координат вручную. ХҮН только для методов Ориент. по Углу, Ориент. по Коорд и Перед Н.
- Для всех методов, кроме Ориент. по Углу и Локальн. Засечка, нажмите ДАЛЕЕ для перехода в окно Введите точку ориентирования.
 Для метода Ориент. по Углу нажмите ДАЛЕЕ для перехода в окно НАСТРОЙ-КА ИЗМЕРЕНИЯ УГЛОВ. Обратитесь к разделу "6.2.2 Измерения на точку", "Визирование на точку".

Для метода Локальн. Засечка нажмите **ДАЛЕЕ** для перехода в окно **Изм. Тч1: Начало** (0/0/0). Первая измеренная точка служит началом системы координат. Вторая измеренная точка, в зависимости от настроек, задает северное или восточное направление системы координат.

4. Окно Введите точку ориентирования: предназначено для ввода индификатора задней точки. Нажмите ДАЛЕЕ для поиска точки в текущем проекте. Выберите нужную точку или введите координаты новой и перейдите в окно Наведите на точку. Обратитесь к разделу "6.2.2 Измерения на точку", "Визирование на точку".

6.2.2

Измерения на точку

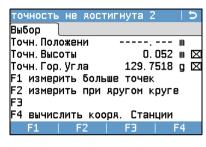
НАСТРОЙКА ИЗМЕ-РЕНИЯ УГЛОВ

Имеется только для Метод: Ориент. по Углу.

Введите идентификатор точки и ее высоту. Измерьте угол по ГК и повторите измерение по второму кругу, нажав **↓** КЛ/КП. Нажмите УСТ-КА для задания нового угла ориентирования. Установление точки стояния завершено.

Визирование на точку

Остальные экраны доступны для всех методов, кроме Ориент. по Углу и Локальн. Засечка


В окне Наведите на точку:

2 / I: Это означает, что вторая точка была измерена при положении круга I.

2 / I II: Вторая точка была измерена при обоих кругах.

Наведитесь на точку и выберите **BCE** или **PACCT**. и **ЗАПИСЬ** для записи данной точки.

Результ. Установ. Станц.

F1 измерить больше точек

Чтобы вернуться во вкладку **Введите точку ориентирования** для измерений большего числа точек.

F2 измерить при другом круге

Для измерения на ту же точку при другом круге.

F3

Для изменения критических значений ошибки.

F4 вычислить коорд. Станции

Для вычисления и отображения координат станции.

Описание символов

Поле	Описание
✓	Ср. кв. отклонение/значение в пределах допуска
Χ	Ср. кв. отклонение/значение выходит за пределы допуска
	Значение не вычисленно

Описание разделов

Поле	Описание
Точн.Поло- жения	Если ср. кв. отклонение расчитывается для значений \mathbf{Y} и \mathbf{X} , то отображается галочка. Если пункт выбран и точность в плане находится вне допуска - результат перечеркивается.
Точн.Высо ты	Если ср. кв. отклонение расчитывается для значения H , то отображается галочка. Если точность по H находится вне допуска, то результат перечеркивается.
Точн.Гор.У гла	Если определяется точность ориентирования, можно выбрать эту опцию. Если пункт выбран и точность ориентирования находится вне допуска - результат перечеркивается.

6.2.3

Результаты

Процесс обработки

Вычисление координат станции определяется через Метод выбранный в окне ВВОД ДАННЫХ О СТАНЦИИ.

При наличии избыточных измерений для определения всех трех координат места установки инструмента и его ориентировки применяется метод наименьших квадратов.

- В процесс обработки включаются осредненные наблюдения при различных кругах.
- Все измерения считаются имеющими одинаковую точность, независимо от того, выполнялись они при одном круге или при обоих кругах.

- Прямоугольные координаты вычисляются с использованием метода наименьших квадратов с выдачей СКО и с введением поправок горизонтальные углы и проложения.
- Окончательное значение высотной отметки (H) определяется по осредненным значениям превышений, полученным по результатам измерений. Для методов Ориент. по Коорд и Пер-ча H значение высотной отметки может быть выбрана как прежняя, осредненная и новая.
- Горизонтальное направление вычисляется по результатам измерений при обоих кругах.

Доступ

Нажмите **F4 вычислить коорд. Станции** в окне **Результ. Установ. Станц.**.

Результ. Установ. Станц.

В этом окне индицируются координаты станции, Конечный результат вычислений зависит от того, какой **Метод** выбран в окне **ВВОД ДАННЫХ О СТАНЦИИ**. Кроме того, в этом окне даются значения среднеквадратических и остаточных ошибок для оценки точности.

Результ.	Установ.	Станц.	1/2	j b
Рез-ат1	Рез-ат2			
Станция	:		44	3
h инст :		1.	500	m
X Y		9.	857	m
Υ :		33.	071	m
Н		6.	519	m 🗵
Hz :		180. 8	869	g 🖂
Δ 🚅 💢				m
Доб Тчк	OCT. OW.	CKO	уст	-KA

Доб Тчк

Возврат в окно Введите точку ориентированиядля выбора новой точки визирования.

ост.ош.

Вывод остаточных погрешностей и определения качества точек в плане, высоте или в плане и высоте. Обратитесь к разделу "ОСТ. ОШИБ-КИ НА ТОЧКЕ".

СКО

Вывод значений средних квадратических ошибок координат и угловых измерений.

УСТ-КА

Установка координат и/или ориентирования станции.

Если высота инструмента в окне настроек задана равной 0.000, то высота станции будет приравнена к высоте оси вращения трубы.

Описание разделов

Поле	Описание	
Станция	Идентификатор точки стояния.	

Поле	Описание
h инстр	Текущая высота инструмента.
Υ	Вычисленная координата Ү.
X	Вычисленная координата Х.
Н	Вычисленная высота.
Hz	Отсчет по горизонтальному кругу после ориентирования прибора.
Δ 🚅	Доступен когда Метод : Пер-ча Н или Ориент. по Коорд только для одной точки. Разность между вычисленным и измеренным горизонтальным проложением между станцией и целью.
Масштаб	Доступен когда Метод : ОБР.ЗАС. и Метод : Зас.Гельм . Масштаб, весом вычислен.
Исп. м-б	ДА или НЕТ . Выберите ДА для использования вычисленного масштаба как масштабного PPM. Это перезапишет масштабный PPM установленный ранее в окне НАСТРОЙКИ EDM. Выберите НЕТ для сохранения существующего значения PPM, без применения вычисленное значение.

ОСТ. ОШИБКИ НА ТОЧКЕ

В окне ОСТ. ОШИБКИ НА ТОЧКЕ отображаются вычисленные остаточные погрешности для точки визирования по горизонтальному проложению, превышению и горизонтальному направлению. Остаточная погрешность вычисляется как разность между вычисленным и измеренным значением.

Использ отображает как используется точка визирования в расчете станции. Выберите **3D**, **2D**, **1D** и **Выкл**..

Описание разделов

Поле	Описание
3D	При расчете используются плановые и высотные координаты.
2D	При расчете используются плановые координаты.
1D	При расчете используются только высота точки.
Выкл.	При расчете данные о точке не используются.

Сообщения

На дисплее могут появляться следующие важные для работы сообщения и предупреждения:

Сообщения	Описание
Для выбранного пункта нет данных!	Это сообщение выводится в тех случаях, когда для выбранной точки нет прямоугольных координат.
Поддерживается не более 10 точек	или 10 точек уже были измерены, а вы пытаетсь выполнить измерения еще на одну точку. Максимально система поддерживает 10 точек.

Сообщения	Описание
Невозможно вычис- лить координатыиз-за проблем с исх.данны- ми!	Результаты измерений не дают возможности вычислить координаты станции.
Проблемы с данными! Не удалось вычислить отметку!	Это сообщение появляется, когда отметка точки визирования неприемлема, либо при отсутствии необходимого для определения отметки станции числа измерений.
Недоп.расхожд.между КЛ и КП	Такое сообщение выдается в тех случаях, когда измерения вертикального угла при обоих кругах расходятся на величину, превышающую -V±0.9°.
Нет измерений!Повторите измерения на точку!	Это предупреждение означает, что для позиционирования станции не хватает информации. Возможные причины: не выполнены измерения на необходимое число точек или не хватает измеренных расстояний.

Следующий шаг

Нажмите УСТ-КА для ввода координат станции и/или ориентирования и возврата в Прогр. Меню.

- Если многократные измерения на точку выполняются при одном и том же круге, то в качестве результата будет использоваться последнее пригодное измерение.
- Для уточнения координат места установки инструмента (станции) можно выполнять повторные измерения на привязочные точки, включать в обработку новые точки или исключать из обработки уже измеренные точки.
- Для Метод: ОБР.ЗАС.:
 - При измерении на точку по первому и второму кругу значения должны быть одинаковыми.
 - Если используются разные коды при круге I и круге II, то используется код круга I. Если с кодом выполненно измерение только по кругу II, то точке присваивается код круга II.
- Вывод данных в XML не позволяет изменять значение ppm во время выполнения измерений в меню ОРИЕНТ..
- Если масштаб вычисляется, то среднее квадратическое отклонение положения по результатам измерений на две точки принимает значение 0.0000. В таком случае засечка отлично вписывается в условия геометрии без избыточных измерений. Поэтому среднее квадратическое отклонение принимает значение 0.000.

6.3

Съемка

Описание

Прикладная программа СЪЕМКА используется для измерений практически неограниченного числа точек. Ее функциональность сравнима с возможностями приложения **Q-съемка** (Быстрая съемка) в окне **Главное Меню**, но включает в

себя возможность предварительных настроек проекта, установка станции и ориентирование прибора доступны до начала измерений.

Доступ

- Выберите Прогр. в Главное Меню.
- 2. Выберите 🙀 СЪЕМКА в ПРОГРАММЫ.
- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".

Съемка

↓ Б. Код

Для активации быстрого кодирования. Обратитесь к разделу "8.2 Быстрые коды".

↓ Инд. Nтч

Для переключения между индивидуальной и последовательной нумерацией точек.

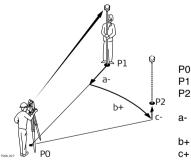
↓ ДАННЫЕ

Для просмотра результатов измерений.

6.4

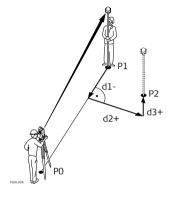
РАЗБИВКА

Описание


Прикладная программа РАЗБИВКА применяется для выноса в натуру проектных точек. Эти точки называют разбивочными. Координаты разбивочных точек должны быть в файле проекта или могут вводиться с клавиатуры.

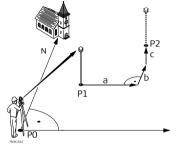
В ходе работы это приложение постоянно выводит на дисплей отклонения текущего положения от проектного.

Способы Разбивки


Проекты можно выносить в натуру следующими способами: полярным, методом перпендикуляров или методом прямоугольных координат.

Полярный метод

- РО Точка установки инструмента (станция)
 - Текущее положение отражателя
- P2 Проектное положение выносимой в натуру точки
- а- ∆ <u>◄</u>: Расхождение в горизонтальных проложениях
- b+ ΔHz: Расхождения в направлениях
- с+ Δ \blacksquare I: Отклонение по высоте

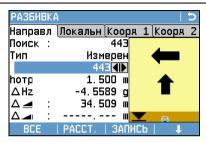

Метод перпендикуляров

- РО Точка установки инструмента (станция)
- Р1 Текущее положение отражателя
- Р2 Проектное положение выносимой в натуру точки

- d3+ ΔH: Отклонение по высоте

Метод прямоугольных координат

- Р0 Точка установки инструмента (станция)
- Р1 Текущее положение отражателя
- Р2 Проектное положение выносимой в натуру точки
- b ΔX : Отклонение от проектного положения по оси X


Доступ

- 1. Выберите прогр. в Главное Меню.
- 2. Выберите РАЗБИВКА в ПРОГРАММЫ Меню.
- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".

Параметры разбивки

Поле	Описание	
Преф/Суффи кс		Используется только в приложении РАЗБИВКА.
	Префикс	Добавляется символ перед проектным индификатором Имя точки, указывая на то, что точка вынесена.
	Суффикс	Добавляется символ после проектного индификатора Имя точки, указывая на то, что точка вынесена.
	Выкл.	Вынесенная в натуру точка будет иметь тот же номер, что проектная точка.
Имя		Используется только в приложении РАЗБИВКА.
		ной не более 4 символов добавляется перед или азбивочной точки
Разбивка Сигнал	Вкл.	Прибор подает звуковой сигнал когда расстояние межту текущим положением отражателя и проектным положением точки ≤ 0.5 м. Чем ближе отражатель к проектному положению точки, тем чаще подается звуковой сигнал.
	Выкл.	Бип отключен.

РАЗБИВКА

↓B&D

Для ввода направления и горизонтального проложения до выносимой точки.

↓ ВРУЧНУЮ

Для ручного ввода координат точки.

↓ Осъемка Для запуска приложения СЪЕМКА. Нажмите ESC для возврата в приложение РАЗБИВКА

Обратитесь к разделу "2.7 Графические символы" для просмотра более подробной информации о символах.

Поле	Описание
Поиск	Поиск нужной точки по ее идентификатору. После ввода данных в это поле будет запущен поиск точек, отвечающих заданному критерию, с выводом на дисплей найденных точек в строку № тчк: Если поиск не даст результатов, то вновь будет открыто окно поиска точек.
Тип	Индикация типа выбранной точки. • Тверд.т-ка, или • Измерения

Поле	Описание
ΔHz	Отклонение по углу: имеет знак +, если проектное положение разбивочной точки находится справа от точки установки отражателя.
Δ	Горизонтальное отклонение: имеет знак +, если проектное положение точки находится дальше точки установки отражателя.
Δ 📶	Отклонение по высоте: имеет знак +, если проектное положение точки находится выше точки установки отражателя.
dL	Продольное отклонение: имеет знак +, если проектное положение точки находится дальше точки установки отражателя.
dT	Поперечное отклонение: имеет знак +, если проектное положение точки находится справа от точки установки отражателя.
ΔΗ	Отклонение по высоте: имеет знак +, если проектное положение точки находится выше точки установки отражателя.
dΥ	Отклонение по Y (на восток): имеет знак +, если проектное положение точки находится справа от точки установки отражателя.
dX	Отклонение по X (на север): имеет знак +, если проектное положение точки находится дальше точки установки отражателя.

6.5 БАЗОВАЯ ЛИНИЯ 6.5.1 Общие сведения

Описание

БАЗОВАЯ ЛИНИЯ является приложением, которое используется при выносе проектов в натуру и контроле осей, например, зданий, дорог или земляных работ. С помощью этого приложения можно задать базовую линию и выполнять следующие операции, опираясь на эту линию:

- Прод. и попер.сдвиг
- Вынос точек

- Разбивка стр. сетки
- Сегментирование линии

Доступ

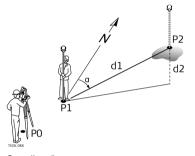
- 1. Выберите прогр. в Главное Меню.
- 2. Выберите БАЗ ЛИН в ПРОГРАММЫ Меню.
- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".

Следующий шаг

Выберите опорную линию для базовой линии.

6.5.2

Задание опорной линии


Описание

Базовая линия задается относительно имеющейся опорной оси. Положение базовой линии относительно опорной оси может определяться продольным и поперечным сдвигом, сдвигом по вертикали, либо поворотом вокруг первой точки базовой

линии. Кроме того, базовую отметку можно задавать на первой или второй точке опорной линии, либо определять путем интерполяции вдоль этой линии.

Определение базовой линии

Базовая линия задается по двум точкам. Эти точки можно определять путем измерений, вводить с клавиатуры, либо выбирать из памяти.

Базовая линия

Р0 Точка установки инструмента (станция)

Р1 Начальная точка

Р2 Конечная точка

d1 Известное расстояние

d2 Разность отметок

α Азимут

Задайте базовую линию, выполнив измерения на начальную и конечную точки, либо выбрав их в памяти.

Следующий шаг

После задания базовой линии на дисплее появится окно БАЗОВАЯ ЛИНИЯ - Инф. для определения опорной линии.

6.5.3

Определение опорной линии

Описание

Базовая линия может определяться сдвигами в горизонтальной и/или вертикальной плоскости относительно первой базовой точки, либо вращением вокруг этой точки. Новая линия, определенная таким образом, называется опорной. Все дальнейшие измерения будут связаны именно с этой линией.

Доступ

После выполнения всех необходимых для задания базовой линии измерений на дисплее появится окно **БАЗОВАЯ ЛИНИЯ - Инф..**

БАЗОВАЯ ЛИНИЯ -Инф.

CETKA

Для разбивки строительной сетки от опорной линии.

измер

Для измерений продольных и поперечных сдвигов.

РАЗБИВК

Для выноса проектных точек по перпендикулярам от опорной линии.

↓ Нов.БЛ

Для задания новой базовой линии.

↓ СДВИГ=0

Для сброса всех значений на 0.

↓ СЕГМЕНТ

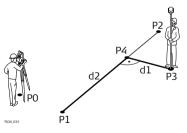
Для разбиения опорной линии на заданное число сегментов и вынос в натуру новых точек на опорной линии.

Поле	Описание
Δ¥¦	Длина базовой линии.

Поле	Описание	
Баз.отмет- ка	Точка 1	Разности отметок вычисляются относительно отметки первой опорной точки.
	Точка 2	Разности отметок вычисляются относительно отметки второй опорной точки.
	Интерполир.	Разности отметок вычисляются интерполированием вдоль опорной линии.
	Нет отметки	Разности отметок не могут быть вычислены или выведены на дисплей.
Сдвиг	Параллельное смещение опорной линии относительно базовой (P1-P2). Доступно на странице 2/2 для черно-белого дисплея или на вкладке Способы для цветного сенсорного дисплея. Смещению вправо от базовой линии присваивается знак плюс.	
Длина	Продольное смещение начальной точки, опорная точка (Р3), относительно опорной линии в направлении базовой точки Р2. Доступно на странице 2/2 для черно-белого дисплея или на вкладке Способы для цветного сенсорного дисплея. Положительными считаются смещения по направлению к точке 2.	
Н	опорной отмет лея или на вкл	орной линии по высоте по отношению к выбранной гке. Доступно на странице 2/2 для черно-белого дисп- падке Способы для цветного сенсорного дисплея. ыми считаются смещения выше опорной точки.

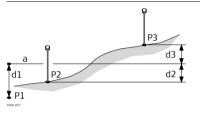
Поле	Описание
Вращение	Здесь можно задать угол поворота опорной линии по часовой стрелке вокруг опорной точки РЗ. Доступно на странице 2/2 для чернобелого дисплея или на вкладке Способы для цветного сенсорного дисплея.

Выберите одну из опциональных клавиш: ИЗМЕР., РАЗБИВК, СЕТКА или


↓ СЕГМЕНТ, для запуска соответствующего приложения.

Измер.прод. и попер. сдвига

Описание


6.5.4

Это приложение вычисляет по результатам измерений или по координатам продольные, параллельные смещения и превышения точки над опорной линией.

Р0 Точка установки инструмента (станция)
 Р1 Начальная точка
 Р2 Конечная точка
 Р3 Измеренная точка
 Р4 Опорная точка
 Δ Поперек
 d2 Δ Вдоль

Пример превышения относительно первой опорной точки

- Р1 Начальная точка Р2 Проектная точка Р3 Проектная точка
- а Опорная отметка
- d1 Разность между отметкой начальной точки и опорной отметкой
- d2 Разность между отметкой точки P2 и опорной отметкой
- d3 Разность между отметкой точки P3 и опорной отметкой

Доступ

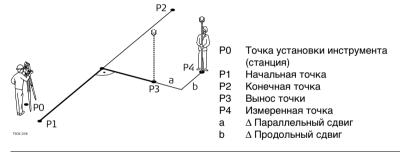
Нажмите ВСЕ в окне БАЗОВАЯ ЛИНИЯ - Инф..

Измер.прод. и попер. сдвига

Поле	Описание	
ΔL	Вычисленное расстояние вдоль опорной линии.	
ΔΟ	Вычисленное расстояние перепендикулярно опорной линии.	
ΔΗ	Вычисленное превышение относительно заданной опорной отметки.	

Следующий шаг

- Либо нажмите ВСЕ для измерения и записи.
- Или нажмите \$ ПРЕД. для возврата в меню БАЗОВАЯ ЛИНИЯ Инф...


6.5.5

Разбивка

Описание

Эта подпрограмма вычисляет расхождение между положением измеренной точки и вычисленным ее положением. На дисплей выводятся ортогональные (ΔL , ΔO , ΔH) и полярные (ΔHz , $\Delta \blacktriangleleft$) расхождения.

Пример ортогональной разбивки

Доступ

Ортогональная разбивка

Нажмите РАЗБИВК в окне БАЗОВАЯ ЛИНИЯ - Инф..

Введите элементы разбивки проектной точки от опорной линии.

Поле	Описание
Длина	Продольное отклонение: имеет знак +, если проектное положение точки находится дальше конца опорной линии.
Сдвг	Поперечное отклонение: имеет знак +, если проектное положение точки находится справа от опорной линии.
Н	Отклонение по высоте: имеет знак +, если проектное положение точки находится выше опорной линии.

Нажмите ДАЛЕЕ для перехода в режим измерений.

Разбивка - Базов. Линии

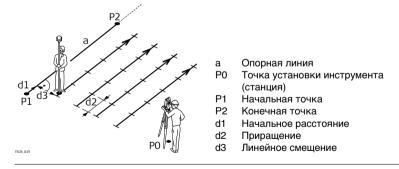
Знаки разностей расстояний и углов являются поправками (для их учета требуется применять знак минус). Стрелки указывают направление движения к проектному положению точки.

Для наглядного отображения ситуации, масштаб по осям X и Y, в графическом экране, может быть изменен. Например, очень длинная дуга или точка расположена очень близко к прямой. Если инструмент далеко от дуги, то он расположен в углу графического экрана и помечен красным/серым.

След Тч Добавление новой разбивочной точки.

Поле	Описание
ΔHz	Горизонтальное направление с измеренной точки на проектное положение. Оно считается положительным, если тахеометр вращают вокруг своей оси по часовой стрелке, для наведения на проектное положение точки.
Δ 🚅	Горизонтальное проложение между измеренной точкой и проектным положением. Имеет знак плюс, если проектное положение выносимой в натуру точки находится за только что измеренной точкой.
Δ 📶	Превышение между измеренной точкой и проектным положением. Имеет знак плюс, если проектная отметка больше, чем отметка измеренной точки.

- Либо нажмите ВСЕ для измерения и записи.
- Или нажмите **І ПРЕД.** для возврата в меню **БАЗОВАЯ ЛИНИЯ Инф.**.


6.5.6

Описание

Подпрограмма СЕТКА

Данная подпрограмма вычисляет и отображает на дисплее разбивочные элементы (точки пересечений) сетки, в виде ортогональных (ΔL , ΔO , ΔH) и полярных (ΔHz , $\Delta \blacktriangleleft$) расхождений. Сетка задается без определенных границ. Ее можно продолжать за конечные точки опорной линии.

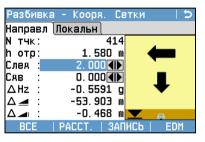
Пример разбивки по строительной сетке

Доступ

Нажмите СЕТКА в окне БАЗОВАЯ ЛИНИЯ - Инф..

ЗАДАНИЕ СЕТКИ

Задайте начало пикетажа и шаг сетки вдоль направления опорной линии и поперек него.



Поле	Описание	
Старт пикетажа	Расстояние между начальной точкой опорной линии и начальной точкой сетки.	
Прираще- ние	Шаг сетки.	
Сдвиг	Смещение относительно опорной линии.	

Нажмите ДАЛЕЕ для переходка к меню Разбивка - Коорд. Сетки.

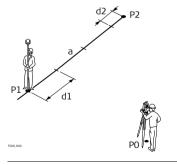
Разбивка - Коорд. Сетки

Знаки разностей расстояний и углов являются поправками (для их учета требуется применять знак минус). Стрелки указывают направление движения к проектному положению точки.

Поле	Описание
Раст	Выбор точки выноса.
Сдвг	Величина смещения. Выносимая в натуру точка находится справа от опорной линии.

Поле	Описание
ΔHz	Горизонтальное направление с измеренной точки на проектное положение. Оно считается положительным, если тахеометр вращают вокруг своей оси по часовой стрелке, для наведения на проектное положение точки.
Δ	Горизонтальное проложение между измеренной точкой и проектным положением. Имеет знак плюс, если проектное положение выносимой в натуру точки находится за только что измеренной точкой.
Δ 📶	Превышение между измеренной точкой и проектным положением. Имеет знак плюс, если проектная отметка больше, чем отметка измеренной точки.
Длина	Шаг по сетке. Точка выносится вдоль направления с первой на вторую точку опорной линии
ΔL	Продольное расстояние между измеренной точкой и проектным положением. Имеет знак плюс, если проектное положение выносимой в натуру точки находится за только что измеренной точкой.
ΔΟ	Расстояние по перпендикуляру между измеренной точкой и проектным положением. Имеет знак плюс, если проектное положение находится правее измеренной точки.

- Либо нажмите ВСЕ для измерения и записи.
- Или нажмите ESC для возврата в окно Введите начало пикетажа сетки!, и там нажмите ПРЕД. для возврата в окно БАЗОВАЯ ЛИНИЯ - Инф..


6.5.7

Описание

Сегментирование линии

Данная подпрограмма вычисляет и отображает на дисплее разбивочные элементы (точки) вдоль линии, в виде ортогональных (Δ L, Δ O, Δ H) и полярных (Δ Hz, Δ \longrightarrow I) расхождений. Сегментирование может выполняться в пределах опорной линии - между ее начальной и конечной точками.

Пример разбивки путем сегментирования линии

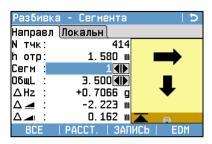
- Р0 Точка установки инструмента (станция)
- Р1 Первая точка с известными координатами
- P2 Вторая точка с известными координатами
- а Опорная линия
- d1 Длина сегмента
- d2 Остаток

Доступ

Нажмите **↓ СЕГМЕНТ** в окне **БАЗОВАЯ ЛИНИЯ - Инф.**.

ОПРЕДЕЛЕНИЕ СЕГМЕНТА

Для работы с этой подпрограммой можно ввести либо длины сегментов, или их количество, а также задать, как именно будет трактоваться длина остатка линии после сегментирования. Этот остаток можно разместить либо в начале, либо в конце линии или распределить его равномерно в доль линии.


Поле	Описание
Длина линии	Вычисленная длина заданной опорной линии.
Длина сегмента	Длина каждого сегмента. Это значение автоматически обновляется при изменении числа сегментов.

Поле	Описание	
Номер сегмента		о сегментов. Это значение автоматически обновляется нии длины сегмента.
Невязка	Длина отрезка опорной линии, которая остается после задания длины сегмента.	
Невязка	Метод распределения остатка.	
	Нет	Весь остаток будет размещен за последним сегментом.
	В начале	Весь остаток будет размещен перед первым сегментом.
	Поровну	Остаток будет поровну распределен по всем сегментам.
	НачалКон	Остаток будет поровну распределен по всем сегментам.

Нажмите ДАЛЕЕ для перехода к меню Разбивка - Сегмента.

Разбивка - Сегмента

Знаки разностей расстояний и углов являются поправками (для их учета требуется применять знак минус). Стрелки указывают направление движения к проектному положению точки.

Поле	Описание
Сегм	Количество сегментов. Включает и остаточный сегмент, при его наличии.
ОбщL	Сумма длин сегментов. Она постоянно наращивается по мере добавления сегментов. Включает и остаточный сегмент, при его наличии.
ΔHz	Горизонтальное направление с измеренной точки на проектное положение. Оно считается положительным, если тахеометр вращают вокруг своей оси по часовой стрелке, для наведения на проектное положение точки.

Поле	Описание
Δ 🚅	Горизонтальное проложение между измеренной точкой и проектным положением. Имеет знак плюс, если проектное положение выносимой в натуру точки находится за только что измеренной точкой.
Δ 📶	Превышение между измеренной точкой и проектным положением. Имеет знак плюс, если проектная отметка больше, чем отметка измеренной точки.
ΔL	Продольное расстояние между измеренной точкой и проектным положением. Имеет знак плюс, если проектное положение выносимой в натуру точки находится за только что измеренной точкой.
ΔL	Расстояние по перпендикуляру между измеренной точкой и проектным положением. Имеет знак плюс, если проектное положение находится правее измеренной точки.

Сообщения

На дисплее могут появляться следующие важные для работы сообщения и предупреждения:

Сообщения	Описание
Базовая линия слишком коротка!	Длина базовой линии менее 1 сантиметра. Выберите базовые точки так, чтобы расстояние между ними было более 1 сантиметра.

Сообщения	Описание
Ошибка в координа- тах!	Не заданы координаты точки или введенные координаты некорректны. Проверьте, как минимум, координаты X и Y.
Идет запись в интерфейс	Вывод данных установлен в Интерфейс в Настройки данных Меню. Для успешного работы с опорной линией, Вывод данных должен быть установлен В память.

- Либо нажмите ВСЕ для измерения и записи.
- Или нажмите ESC для возврата в окно Определение сегмента линии и там нажмите ПРЕД. для перехода в окно БАЗОВАЯ ЛИНИЯ.
- Либо на **ESC** для выхода из программы.

6.6 БАЗОВАЯ ДУГА 6.6.1 Общие сведения

Описание

Приложение БАЗОВАЯ ДУГА позволяет пользователю задать базовую дугу и выполнять следующие задачи:

- Прод. и попер.сдвиг
- Разбивка (точка, кривая, хорда, угол)

Доступ

Выберите Прогр. в Главное Меню.

- 2. Выберите 📑 БАЗ ДУГА в ПРОГРАММЫ Меню.
- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".

Задание опорной дуги.

6.6.2

Определение опорной дуги

Описание

Опорная дуга задается;

- Центральной точкой и начальной точкой,
- начальной точкой, конечной точкой и радиусом
- тремя точками.

Эти точки можно определять путем измерений, вводить с клавиатуры, либо выбирать из памяти.

~

Дуги задаются по часовой стрелке и все вычисления выполняются в двух измерениях.

Доступ

Выберите БАЗ ДУГА, а затем один из методов определения дуги:

- F1 Центр, нач.точка
- F2 Нач.и кон.точки,радиус
 - F3 3 Точки

Базовая дуга -Измерения на начальную точку

Поле	Описание
Нач.точка	Идентификатор начальной точки.
Центр.точк а	Идентификатор точки центра.

Поле	Описание
Средняя Точка	Идентификатор точки центра.
Кон.точка	Идентификатор конечной точки.
Радиус	Радиус дуги.

После задания базовой дуги появится окно БАЗОВАЯ ДУГА - Инф..

БАЗОВАЯ ДУГА -Инф.

В некоторых случаях, есть два математических решения, как показано на рисунке выше. Соответствующее решение может быть выбрано в подпрограммах Измерение и Разбивка.

Нажмите ДАЛЕЕ и далее выбираем подпрограмму ИЗМЕР. или РАЗБИВК.

6.6.3

Описание

Измер.прод. и попер. сдвига

Эта подпрограмма вычисляет по результатам измерений или по координатам продольные и поперечные смещения и превышения точки над опорной дугой.

Пример использования подпрограммы Измер.прод. и попер. сдвига

Доступ

Нажмите ВСЕ в окне БАЗОВАЯ ДУГА - Инф..

Измер.прод. и попер. сдвига

Поле	Описание
ΔL	Вычисленное расстояние вдоль базовой дуги.
ΔΟ	Вычисленное расстояние перепендикулярно базовой дуге.

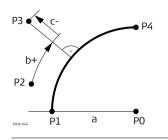
Поле	Описание
ΔΗ	Вычисленное превышение относительно отметки начальной точки базовой дуги.

- Либо нажмите ВСЕ для измерения и записи.
- Или нажмите ↓ ПРЕД. для возврата в меню БАЗОВАЯ ДУГА Инф...

6.6.4

Разбивка

Описание


Эта подпрограмма вычисляет расхождение между положением измеренной точки и вычисленным ее положением. Подпрограмма БАЗОВАЯ ДУГА поддерживает четыре способа разбивки:

- Вынос точки
- Разбивка дуги

- Разбивка хорды
- Вынос по углам

Вынос точки

Эта процедура позволяет вынести в натуру проектную точку, задав дугу и смещение от нее.

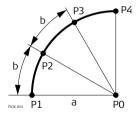
Р0 Центр дуги

Р1 Начальная точка дуги

Р2 Измеренная точка

Р3 Вынос точки

Р4 Конечная точка дуги


а Радиус дуги

b+ Линейное смещение

с- Перпендикулярный сдвиг

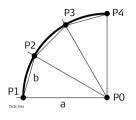
Разбивка дуги

Эта операция позволяет разбить по дуге несколько равноотстоящих точек.

Р0 Центр дуги

Р1 Начальная точка дуги

Р2 Вынос точки Р3 Вынос точки


Р4 Конечная точка дуги

а Радиус дуги

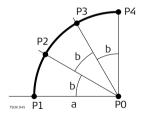
b Длина дуги

Разбивка хорды

Эта операция позволяет разбить вдоль дуги несколько равноотстоящих хорд.

Р0 Центр дуги

Р1 Начальная точка дуги


Р2 Вынос точки Р3 Вынос точки

Р4 Конечная точка дуги

а Радиус дуги b Длина хорды

Вынос по углам

Этот вариант служит для разбивки нескольких точек вдоль дуги по заданным значениям угловых секторов от центра дуги.

Р0 Центр дуги

Р1 Начальная точка дуги

P2 Вынос точки P3 Вынос точки

Р4 Конечная точка дуги

а Радиус дуги

b Вынос по углам

Доступ

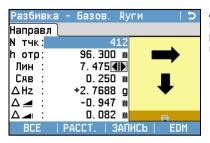
- 1) Нажмите РАЗБИВК в окне БАЗОВАЯ ДУГА Инф..
- 2) Выберите один из указанных методов разбивки:

Вынос точки, разбивка дуги, хорд или по углам

Введите разбивочные элементы. Нажмите **Центр** для выноса центра дуги.

Поле	Описание	
Длина	базовой дуги или по центр	и дуги, хорд и по углам: Продольный сдвиг относительно 1. Это значение вычисляется по длине дуги, длине хорды ральному углу, а также с учетом выбранного способа ния невязки.
	Для выноса	точки: Продольный сдвиг относительно базовой дуги.
Сдвиг	Перпендику.	пярный сдвиг относительно базовой дуги.
Невязка	Для разбивки по дуге: метод распределения невязки. Если заданная длина сегмента дуги не является кратным числом общей длины дуги, то возникает невязка, которую нужно распределить.	
	Без распред.	Невязка будет добавлена к последней секции дуги.
	ПОРОВНУ	Остаток будет поровну распределен по всем сегментам.
	Начало дуги	Невязка будет добавлена к первой секции дуги.
	Начало и конец	Половина невязки добавится к первой секции дуги, половина - ко второй.
Длина дуги	Для разбивк	и по дуге: Длина сегмента дуги для разбивки.

Поле	Описание
Длина хорды	Для разбивки хорд: Длина хорд для разбивки.
Угол	Для выноса по углам: Углы на проектные положения точек с геометрического центра базовой дуги.


Нажмите ДАЛЕЕ для перехода в режим измерений.

Разбивка - Базов. Дуги

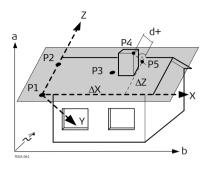
Знаки разностей расстояний и углов являются поправками (для их учета требуется применять знак минус). Стрелки указывают направление движения к проектному положению точки.

Для наглядного отображения ситуации, масштаб по осям X и Y, в графическом экране, может быть изменен. Например, очень длинная дуга или точка расположена очень близко к прямой. Если инструмент далеко от дуги, то он расположен в углу графического экрана и помечен красным/серым.

Для задания следующей точки выноса, вводят имя точки, высоту отражателя, расстояние по дуге и поперечное смещение.

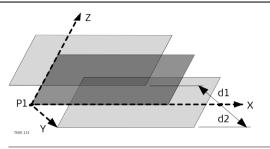
Поле	Описание
ΔHz	Горизонтальное направление с измеренной точки на проектное положение. Оно считается положительным, если тахеометр вращают вокруг оси по часовой стрелке, для наведения на проектное положение точки.
Δ	Горизонтальное проложение между измеренной точкой и проектным положением. Имеет знак плюс, если проектное положение выносимой в натуру точки находится за только что измеренной точкой.
Δ 📶	Превышение между измеренной точкой и проектным положением. Имеет знак плюс, если проектная отметка больше, чем отметка измеренной точки.

Следующий шаг


- Либо нажмите
 ↓ ВСЕ для измерения и записи.
- Или нажмите **І ПРЕД**. для возврата в меню **БАЗОВАЯ ДУГА Инф**..
- Либо на ESC для выхода из программы.

6.7 БАЗОВАЯ ПЛОСКОСТЬ

Описание


Приложение БАЗОВАЯ ПЛОСКОСТЬ используется для измерений точек относительно базовой плоскости. Она может использоваться для решения следующих задач:

- Измерения на точку для определения ее отстояния по перпендикуляру от плоскости.
- Вычисления длин перпендикуляров от проекции точки на плоскость до осей X и Z местной системы координат. Эта проекция определяется как точка пересечения перпендикулярного к плоскости вектора, проходящего через измеряемую точку.
- Просмотр и запись разбивочных координат проекции точки на плоскость.
 Базовая плоскость строится по ее трем измеренным точкам. Эти точки одновременно задают местную систему координат:
- Первая точка служит начало координат этой системы.
- Вторая точка определяет направление оси Z местной системы координат.
- Третья точка окончательно определяет саму плоскость.

- Х Ось X местной системы координат.
- Y Ось Y местной системы координат.
- Z Ось Z местной системы координат.
- Р1 Первая точка, начало местной системы координат.
- Р2 Вторая точка
- Р3 Третья точка
- Р4 Измеренная точка. Эта точка может не принадлежать плоскости.
- Р5 Проекция точки Р4 на плоскость. Эта точка обязательно принадлежит плоскости.
- d+ Расстояние по перпендикуляру от точки Р4 до плоскости.
- ΔΧ Расстояние по перпендикуляру от точки Р5 до оси Z местной системы координат.
- ΔΖ Расстояние по перпендикуляру от точки Р5 до оси X местной системы координат.

Расстояние от плоскости может иметь знак плюс или минус:

- Р1 Начало координат в системе координат базовой плоскости
- Х ось Х плоскости
- Y ось Y плоскости
- Z ось Z плоскости
- d1 Положительное значение сдвига d2 Отрицательное
 - d2 Отрицательное значение сдвига

Доступ

- 1. Выберите прогр. в Главное Меню.
- 2. Выберите БАЗ.ПЛ-ТЬ в меню ПРОГРАММЫ.
- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".

Измерения на точки плоскости и целевые точки

- Как только три точки, определяющие плоскость, будут заданы, на дисплее появится окно Выполните измерения на нов.тчк.
- 2. Выполните измерения на целевую точку и запишите их. Результаты выводятся на дисплей в окне **БАЗОВАЯ ПЛОСКОСТЬ-РЕЗУЛЬТАТЫ**.

БАЗОВАЯ ПЛОС-КОСТЬ-РЕЗУЛЬТА-ТЫ

Нов.тчк

Запись новой точки пересечения и переход к измерению новой точки.

РАЗБИВК

Вывод элементов разбивки для точки пересечения. Обратитесь к разделу "2.7 Графические символы" для получения более подробной информации о символах.

Нов.пл.

Определение новой базовой плоскости.

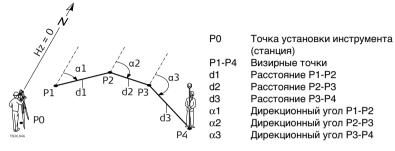
Поле	Описание
Цел.точ.	Идентификатор точки проекции на плоскость целевой точки.
Сдвиг	Вычисленное расстояние между определяемой точкой и ее проекцией на плоскость.
Длина	Расстояние по перпендикуляру от точки пересечения до оси Z местной системы координат.
ΔΖ	Расстояние по перпендикуляру от точки пересечения до оси X местной системы координат.
Υ	Значение координаты Ү точки пересечения.

Поле	Описание	
Х	Значение координаты X точки пересечения.	
Н	Высотная отметка точки пересечения.	

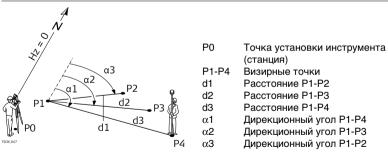
6.8

КОСВЕННЫЕ ИЗМЕРЕНИЯ

Описание


Приложение КОСВ.ИЗМЕРЕНИЯ позволяющее вычислять наклонные расстояния, горизонтальные проложения, превышения и дирекционные углы между двумя точками, на которые были выполнены измерения или по их координатам, взятым из памяти, либо введенным с клавиатуры.

Методы косвенных измерений


Можно выбрать один из двух описанных ниже способов:

- **F1** Полигональный: P1-P2, P2-P3, P3-P4.
- **F2** Радиальный: P1-P2, P1-P3, P1-P4.

Полигональный метод

Радиальный метод

Доступ

- 1. Выберите прогр. в Главное Меню.
- 2. Выберите КОСВ.ИЗМ в меню ПРОГРАММЫ.
- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".
- 4. Выберите **F1 Полигональный** или **F2 Радиальный**.

Косвенные измерения

После всех необходимых измерений появится окно РЕЗУЛЬТАТЫ КОСВ. ИЗМЕ-РЕНИЙ.

РЕЗУЛЬТАТЫ КОСВ. ИЗМЕРЕ-НИЙ - Полигональный метод

РЕЗУЛЬ	ТАТЫ	KOCB.	ИЗМ	ЕРЕНИЙ	15
Рез-ат					
Точка	1:				408
Точка	2:				409
Дируго.	л:			136, 997	71 g
Уклон	:	1.0	100:	0. 029	h:v
Δ 🛥	:			3. 53	33 m
$\Delta \angle$:			3. 53	34 m
Δ	:			0. 10	34 m
Нов. т.	1 Ho	в. т. 2		PA	ДИАЛ

Нов.т.1

Для расчета дополнительной линии. Приложение будет перезапущено с точки 1.

Нов.т.2

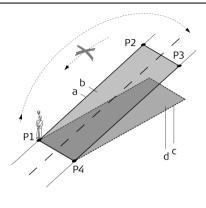
Точка 2 будет использоваться как начальная точка новой линии. Потребуется выполнить измерения на точку 2.

РАДИАЛ

Для перехода к радиальному методу.

Поле	Описание
ДирУгол	Дирекционный угол направления между точками 1 и 2.
Уклон	Уклон между точками 1 и 2.
Δ	Наклонное расстояние между точками 1 и 2.
Δ.	Горизонтальное проложение между точками 1 и 2.
Δ 📶	Превышение между точками 1 и 2.

Следующий шаг


Нажмите **ESC** для выхода из приложения.

6.9

ПЛОЩАДЬ И ЦММ-ОБЪЕМ

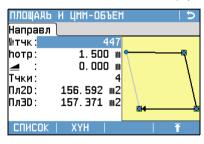
Описание

Это приложение позволяет вычислять, в реальном времени, площади участков, ограниченных максимум 50-ю точками, соединенных отрезками прямой. Эти точки должны быть измерены, взяты из памяти либо заданы с клавиатуры - с расположением их по часовой стрелке. Вычисленная площадь проектируется на горизонтальную плоскость (2D) или на наклонную опорную плоскость, заданную своими тремя точками (3D). Также объемы автоматически вычисляются в результате обсчета цифровой модели местности (DTM).

- Ро Точка установки инструмента (станция)
- Р1 Точка для задания наклонной опорной плоскости
- P2 Точка для задания наклонной опорной плоскости
- Р3 Точка для задания наклонной опорной плоскости
- Р4 Точка визирования
- а Периметр (3D), т.е. общая длина сегментов границы полигона от начальной до текущей точки
- b Площадь (3D), спроектированная на наклонную отсчетную плоскость
- с Периметр (2D), т.е. общая длина сегментов границы полигона от начальной до текущей точки
- d Площадь (2D), спроецированная на горизонтальную плоскость

Доступ

- Выберите Прогр. в Главное Меню.
- 2. Выберите


Плщ объем в меню ПРОГРАММЫ.

3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения - Приступая к работе".

ПЛОЩАДЬ И ЦММ-ОБЪЕМ

На дисплее всегда будет показываться площадь, спроектированная на горизонтальную плоскость. Точки, задающие опорную плоскость, будут отмечены знаком:

- для измеренных точек.
- Для точек введеных в ручную.
- Для точек задающих опорную плоскость.

вычисл.

Вывод на дисплей и запись дополнительных результатов (периметр, объем).

Назад

Для отмены измерений или выбора предыдущей точки.

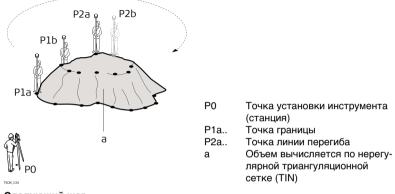
↓ ЛинПер

Для измерения или выбора точки на линии перегиба (характерной линии). Далее по этим точкам будет вычисляться объем.

↓ Опр.3D

Для задания наклонной опорной плоскости, посредством выбора из списка или измерения трех точек.

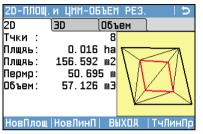
Вычисление площади


Линия перегиба должна находиться в пределах границы заданной территории.

Площади в 2D и 3D можно автоматически вычислять, как только заданы три точки. 3D площадь автоматически вычисляется на основе:

- последних трех точек, покрывающих наибольшую территорию.
- Если две территории одинаковы, будет выбрана та, периметр которой меньше.
- Если у двух территорий равная площадь и равный периметр, будет выбрана область, которой принадлежит последняя измеренная точка.

Опорную плоскость, для расчета 3D площади, можно задать вручную, выбрав **Опр.3D**.


Графическая визуализация

Следующий шаг

Нажмите **ВЫЧИСЛ.** для расчета площади и объема и перехода в окно **2D-ПЛОЩ.и ЦММ-ОБЪЕМ РЕЗ.** / **3D-ПЛОЩ.и ЦММ-ОБЪЕМ РЕЗ.**.

2D-ПЛОЩ.и ЦММ-ОБЪЕМ РЕЗ.

06.PEW	и ВЕС	Вычи	1СЛ.			þ
2D	(3D		Объем			
ПлощЗеі	мПов	:	1	57. 7	10	m2
ПлощЛи		. :		39. 3		
ЦММ-061	ьем І	:		57. 1	26	mЭ
Коэфф.	сжати	я:			1. 2	00
ЦММ-06 1	ьем II	:		68. 5	51	mЭ
Козфф.	Beca	:	1.	600	t/	mЭ
Bec		:		109.	682	t t
НовПло	щ НовЛ	ΊинΠ	BHXO	l T	ιЛи	нПр

Поле	Описание
Плщдь (2D)	Вычисляется площадь проекции на горизонтальную плоскость.
Плщдь (3D)	Вычисляется площадь проекции на заданную поверхность.
ПлощЗемПов	По нерегулярной триангуляционной сетке вычисляется площадь, ограниченная отмеченными точками.
ПлощЛинПерег.	По нерегулярной триангуляционной сетке вычисляется площадь поверхности между линиями перегиба.
ЦММ-Объем I	Объем вычисляется по нерегулярной триангуляционной сетке.
Коэфф. сжатия	Коэффициент отношения объема вещества в природе к его объему после выбора грунта. Обратитесь к таблице "Коэфф. сжатия" для получения более подробной информации.

Поле	Описание
ЦММ-Объем II	Объем грунта после выбора. ЦММ-Объем II = ЦММ-Объем I х Коэфф. сжатия .
Коэфф. Веса	Вес материала в тоннах на м ³ . Изменяемое поле.
Bec	Суммарная масса грунта после выбора. Вес = ЦММ-Объем II х Коэфф. Веса .

Коэфф. сжатия

Даны коэффициенты для разных грунтов согласно DIN18300.

Класс грунта	Описание	Коэфф. сжатия
1	Верхняя часть грунта, содержащая неорганические вкрапления, чернозем.	1.10 - 1.37
2	Бедные почвы.	n/a
3	Типы грунтов, легко поддающиеся разрушению. Несвязные.	1.06 - 1.32
4	Умеренно поддающиеся разрушению грунты. Состоят из песков, осадочных пород, глины.	1.05 - 1.45
5	Трудно разрушаемые грунты. Те же, что 3 и 4, однако с большим вкраплением камней до 0,01 м ³ или 0.1 м ³ .	1.19 - 1.59
6	Связанные грунты, состоящие из горных пород.	1.25 - 1.75

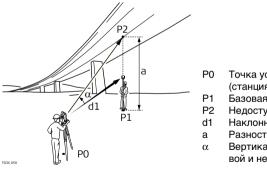
Класс грунта		Коэфф. сжатия
7	Практически неразрушимые грунты, состоящие из горных пород с высокой степенью связанности.	1.30 - 2.00

Коэффициенты сжатия: приблизительные значения. В каждом конкретном случае, значение коэффициента может несколько отличаться.

Тип грунта	Коэффициент сжатия	Масса на метр кубичес- кий
Осадочные породы (ил)	1.15 - 1.25	2.1 т
Песок	1.20 - 1.40	1.5 - 1.8 т
Глина	1.20 - 1.50	2.1 т
Дерн, чернозем	1.25	1.5 - 1.7 т
Песчаник	1.35 - 1.60	2.6 т
Гранит	1.35 - 1.60	2.8 т

Следующий шаг

- Нажмите НовПлощ для определения нового участка.
- Нажмите НовЛинП для определения новой характерной линии и вычисления объема.


- Нажмите ТчЛинПр для ввода новой точки характерной линии поверхности и вычисления объема
- Или нажмите **ВЫХОД** для выхода из приложения.

6.10

Описание

ОТМЕТКА НЕДОСТУПНОЙ ТОЧКИ

Приложение ОТМЕТКА НЕДОСТУПНОЙ ТОЧКИ используется для вычисления высотных отметок недоступных для непосредственных измерений точек, расположенных над пунктом установки отражателя, без необходимости его размещения на самой этой точке.

- Точка установки инструмента
 - (станция)
- Базовая точка
- Недоступная точка
- Наклонное расстояние
- Разность отметок точек Р1 и Р2
- Вертикальный угол между базовой и недоступной точками

Доступ

- Выберите ____ Прогр. в Главное Меню.
- Выберите ____ Недост.Н в меню ПРОГРАММЫ.
- Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения - Приступая к работе".

Определение отметки недоступной точки

Выполните измерение на базовую точку или нажмите hotp=? для определения высоты отражателя.

Следующий шаг

После измерения появится окно Наведите на недоступную точку!.

Удаленная высота -Результат - Наведите на недоступную точку!

Наведите трубу тахеометра на недоступную точку.

Поле	Описание
Δ 📶	Превышение между базовой и недоступной точкой.
Н	Отметка недоступной точки.
Υ	Вычисленный Y недоступной точки.
X	Вычисленный X недоступной точки.
ΔΥ	Вычисленное расхождение координат Y измеренной точки и недоступной точки.
ΔΧ	Вычисленное расхождение координат X измеренной точки и недоступной точки.

Поле	Описание
	Вычисленное расхождение высот измеренной точки и недоступной точки.

Следующий шаг

- Либо нажмите ДАЛЕЕ для сохранения измерений и записи вычисленных координат недоступной точки.
- Или нажмите **BASE** для ввода и измерения новой базовой точки.
- Или нажмите ESC для выхода из приложения.

6.11

COGO

6.11.1 Запуск приложения COGO

Описание

Приложение COGO образовано от **co**ordinate **geo**metry и предназначено для выполнения вычислений, по формулам координатной геометрии, расстояний, дирекционных углов между точками и их координат. В COGO используются следующие методы расчетов:

- Обратная задача и траверс
- Засечки

- Сдвиг
- Продление

Доступ

. Выберите прогр. в Главное Меню.

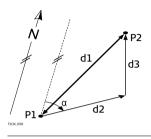
- 2. Выберите **СОВО** в **меню ПРОГРАММЫ**.
- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".
- 4. Выберите приложение COGO из **COGO Главное Меню**.

Отображение

В окне Результаты нажмите **РАЗБИВК** для перехода в графический режим разбивки.

Или в окне Результаты перейдите на вторую страницу для наглядного отображения ситуации. Обратитесь к разделу "2.7 Графические символы" для просмотра более подробной информации о символах.

6.11.2

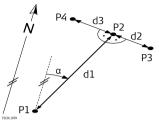

Прямая и обратная задачи

Доступ

Выберите **ОБРАТНАЯ ЗАДАЧА** или **ПРЯМАЯ ЗАДАЧА** в **СОGO Главное Меню**.

ОБРАТНАЯ ЗАДА-ЧА

Используйте подпрограмму **ОБРАТНАЯ ЗАДАЧА** для расчета расстояния, дирекционного угла, превышения и уклона между двумя известными точками.


- Р1 Первая точка с известными координатами Р2 Вторая известная точка с известными коор-
 - . динатами

Определяемые данные

- α Дирекционный угол с точки Р1 на Р2
- d1 Наклонное расстояние между Р1 и Р2
- d2 Горизонтальное проложение между P1 и P2
- d3 Превышение между Р1 и Р2

ПРЯМАЯ ЗАДАЧА

Используйте подпрограмму **ПРЯМАЯ ЗАДАЧА** для рассчета положения новой точки по дирекционному углу и расстоянию от известной точки. Можно задавать и сдвиг.

P1	Точка с известными координатами
α	Дирекционный угол с точки Р1 на Р2
d1	Расстояние между Р1 и Р2
d2	Положительное значение слвига - вправ

Отрицательное значение сдвига - влево Определяемые данные

- точка, координаты которой вычисленны по программе COGO без сдвига
- P3 точка, координаты которой вычисленны по программе COGO со сдвигом вправо (+)
- P4 точка, координаты которой вычисленны по программе COGO со сдвигом влево (-)

6.11.3 Засечки

Доступ

Выберите нужный метод в подпрограмме Засечка из **СОGO Главное Меню**:

d3

ДУ - ДУ

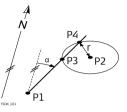

Рст-Рст

ДУ -Рст

По 4 тч

Азимут-Азимут

Используйте подпрограмму Азимут-Азимут для расчета точки пересечения двух линий. Направление определяется своим дирекционным углом и координатами известной точки.


- Р1 Первая точка с известными координатами
- P2 Вторая известная точка с известными координатами
- α1 Дирекционный угол с точки Р1 на Р3
- α2 Дирекционный угол с точки Р2 на Р3

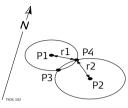
Определяемые данные

РЗ точка, координаты которой будут вычислены программой COGO

Азимут-Азимут

Используйте подпрограмму **Азимут-Азимут** для расчета точки пересечения прямой и окружности. Направление определяется своим дирекционным углом и координатами известной точки. Окружность засечки определяется ее центром и радиусом.

α


- Р1 Первая точка с известными координатами
- P2 Вторая известная точка с известными координатами
 - Дирекционный угол с P1 на P3 и P4
- r Радиус как расстояние от P2 до P4 или P3

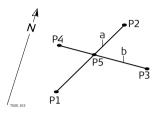
Определяемые данные

- РЗ Первая точка, координаты которой вычисляются по программе COGO
- Р4 Вторая точка, координаты которой вычисляются по программе COGO

Расстояниерасстояние

Воспользуйтесь программой Расстояние-расстояние для вычисления точки пересечения двух окружностей. Эти окружности задаются положением их центров и расстояниями, измеренными до определяемых точек.

- Р1 Первая точка с известными координатами
- P2 Вторая известная точка с известными координатами
- r1 Радиус как расстояние от Р1 до Р3 или Р4
- r2 Радиус как расстояние от P2 до P3 или P4


Определяемые данные

- Р3 Первая точка, координаты которой вычисляются по программе COGO
- Р4 Вторая точка, координаты которой вычисляются по программе COGO

По 4 тч

Воспользуйтесь подпрограммой **По 4 тч** для расчета точки пересечения двух линий. Каждая линия задается двумя известными точками.

Чтобы добавить сдвиг линий, перейдите к странице 2/2 в черно-белом экране или Способы на цветном экране. + означает смещение вправо - означает смещение влево.

- Р1 Первая точка с известными координатами
- P2 Вторая известная точка с известными координатами
- Р3 Третья известная точка
- Р4 Р4 Четвертая точка с известными координатами
- а Линия, соединяющая точки Р1 и Р2
- b Линия, соединяющая точки P3 и P4

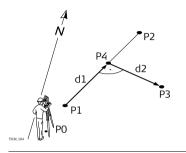
Определяемые данные

P5 точка, координаты которой будут вычислены программой COGO

6.11.4

Сдвиги

Доступ


Выберите нужный метод в подпрограмме Засечка из **СОGO Главное Меню**:

• Лин.сдв

ВыносТч

Пл-сть

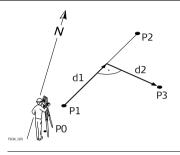
СДВИГ ПО РАССТОЯНИЮ Используйте подрограмму **СДВИГ ПО РАССТОЯНИЮ** для определения положения новой точки на заданной линии как основание перпендикуляра, опущенного на эту линию с известной точки.

РО Точка установки инструмента

(станция)

Р1 Начальная точка Р2 Конечная точка

Р3 Точка сдвига


Определяемые данные

d1 Δ Вдоль d2 Δ Поперек

Р4 СОGО (базовая) точка

ВЫНОС ТЧК ПО РАССТ И СДВИГУ

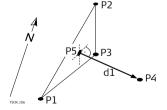
Воспользуйтесь подрограммой ВЫНОС ТЧК ПО РАССТ И СДВИГУ для определения координат точки по расстоянию и поперечному сдвигу от заданной линии.

Р0 Точка установки инструмента (станция)

Р1 Начальная точка

Р2 Конечная точка

d1 ∆ Вдоль


d2 Δ Поперек

Определяемые данные

Р3 Точка, координаты которой будут вычислены программой СОGО

СДВИГ ПЛОСКОС-ТИ

Воспользуйтесь подрограммой СДВИГ ПЛОСКОСТИ для определения координат точки, ее отметки и смещения относительно заданной плоскости с учетом заданного сдвига.

Исходные данные

Р1 1-я точка плоскости

2 2-я точка плоскости

Р3 3-я точка плоскости

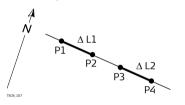
Р4 Точка сдвига

Определяемые данные

P5 СОGО-точка пепесечения

d1 Сдвиг

6.11.5


Доступ

ПРОДЛЕНИЕ ЛИНИИ

Продление линии

Выберите **ПРОДЛЕНИЕ ЛИНИИ** в **СОGO Главном Меню**.

Воспользуйтесь приложением **ПРОДЛЕНИЕ ЛИНИИ** для определения положения точки на продолжении базовой линии.

Исходные данные

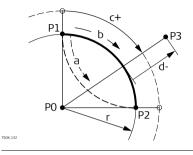
Р1 Начальная точка базовой

линии

Р3 Конечная точка базовой линии

 Δ L1, Δ L2 Расстояние

Определяемые данные


P2, P4 Точки на продолжении COGO

6.12

Описание

Дорога 2D

ДОРОЖНЫЕ 2D-РАБОТЫ - применяется для измерения или выноса в натуру точек относительно какого-то элемента. Таким элементом может быть прямая, дуги или клотоида. В качестве данных могут быть пикетаж, шаг разбивки и сдвиги (влево или вправо).

Р0 Центр дуги

Р1 Начальная точка дуги

Р2 Конечная точка дуги Р3 Разбивочная точка

а Против часовой стрелки

b По часовой стрелке

с+ Расстояние по кривой от ее начала

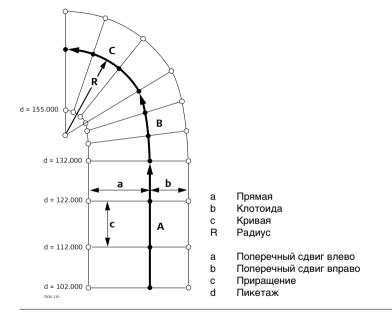
d Сдвиг от кривой по перпендикуляру

r Радиус дуги

Доступ

1. Выберите прогр. в Главном Меню.

2.


ыберите 🝊 ДОРОЖНЫЕ 2D-РАБОТЫ в ПРОГРАММЫ Меню.

- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".
 - 4. Выберите тип элемента:
 - Прямая

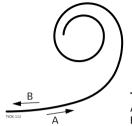
Кривая

• Клотоида

Компоненты

Задание элементов

- Введите с клавиатуры, измерьте или выберите из памяти начальную и конечную точку.
- 2. Окно ДОРОГА 2D применяют для определения элементов дуги и клотоиды.



3. Для элементов дуги:

- Задайте радиус и направление дуги (по ЧС или против ЧС).
- Нажмите ДАЛЕЕ.

Для элементов клотоиды:

- Выберите используемый метод: Рад/Пар. или Рад/Дл..
- Введите радиус и параметр, либо радиус и длину, в зависимости от выбранного метода.
- Выберите тип и направление клотоиды.
- Нажмите ДАЛЕЕ.

Тип клотоиды

A Входная клотоида В Выходная клотоида

4. После определения элемента, появляется ДОРОГА 2D - Конфиг..

Способы пикетажа

Введите данные о пикетаже и нажмите на:

- РАЗБИВК для выбора разбивочной точки и ее смещения (от центра, влево или вправо) и выполните измерения. Сдвиг текущей точки от ее проектного положения будет показан на дисплее.
- **КОНТРЛЬ** для измерения точек, расчетов пикетажа, продольных и поперечных сдвигов от заданного элемента.

Задание разбивочных элементов

Следующий шаг

- В режиме разбивки нажмите ДАЛЕЕ для запуска разбивочных работ.
- Или в режиме измерений выберите ВСЕ для выполнения измерений и записи их результатов.

6.13 6.13.1

ДОРОЖНЫЕ 3D-РАБОТЫ Запуск приложения ДОРОЖНЫЕ 3D-РАБОТЫ

Описание

ДОРОЖНЫЕ 3D-РАБОТЫ используется для выноса точек в натуру или испольнительной съемки трассы, в том числе проверки уклона. В этом приложении доступны следующие возможности:

- Разбивка в плане по таким элементам как прямая, дуга и переходная кривая (входные, выходные или частичные)
- Вертикальная разбивка по таким элементам как прямая, дуга и квадратическая парабола
- Загрузка элементов горизонтальной и вертикальной разбивки в формате gsi FlexOffice Leica Road Line Editor
- Создание, просмотр и удаление элементов выноса проекта в натуру непосредственно на тахеометре
- Использование для вертикальной разбивки проектных высот из файла или ввод отметок вручную
- Создание файлов регистрации с помощью модуля Format manager программы FlexOffice

ДОРОЖНЫЕ 3D-РАБОТЫ

ДОРОЖНЫЕ 3D-РАБОТЫ содержит следующие подрограммы:

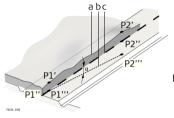
• Подрограмма Проверка

- Подрограмма Проверка уклона
- Подрограмма Вынос в натуру
- Подпрограмма Вынос уклона

Эту программу можно запускать не более 15 раз. После этого потребуется оплатить и получить лицензионный код.

ДОРОЖНЫЕ 3D-РАБОТЫ шаг за шагом

- 1. Создайте новый проект или загрузите уже существующий.
- 2. Выберите файлы горизонтальной и/или вертикальной разбивки.
- 3. Задайте параметры разбивки, контроля и уклонов.
- 4. Выберите одну из программ ДОРОЖНЫЕ 3D-РАБОТЫ.


- Файлы створов должны иметь структуру, создаваемую модулем Road Line Editor программы FlexOffice. В этих gsi-файлах каждый элемент имеет уникальный идентификатор, который используется прикладной программой.
- Данные для выноса проектов в натуру должны быть непрерывными, поскольку геометрические разрывы и уравнения пикетажа не поддерживаются системой.
- Файлы горизонтальных створов должны иметь префикс ALN, например, ALN_HZ_Axis_01.gsi. Файлы вертикальных створов должны иметь префикс PRF, например, PRF_VT_Axis_01.gsi. Имя файла не должно содержать более 16 символов.
- Созданные или загруженные файлы проектов дорожного строительства всегда сохраняются в памяти, даже если прикладная программа закрывается нештатным образом.
- Файлы створов можно удалять непосредственно из памяти тахеометра или с помощью модуля Data Exchange Manager в FlexOffice.
- Редактировать такие файлы на самом тахеометре невозможно. Это можно делать с помощью модуля Road Line Editor в FlexOffice.

6.13.2

Терминов иопредлений

Элементы дорожого проекта

Чаще всего проект дорог состоит из горизонтальных и вертикальных створов.

Любая проектная точка Р1 определяется тремя координатами в заданной системе и по своему положению может принадлежать к одному из трех типов:

Р1' Положение на существующей поверхности
Р1" Положение вдоль проектной оси

Р1'" Положение на проектной горизонтальной плоскости

Вторая точка Р2 определяет:

P1' P2'

Проекция оси трассы на существующую поверхность

P1" P2"

Вертикальный створ

P1''' P2'''

Горизонтальный створ

γгол между вертикальным и горизонтальным створом.

а Существующая поверхность

b Горизонтальный створ

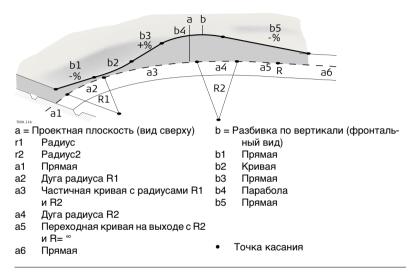
с Вертикальный створ

Горизонтальные геометрические элементы

Программа ДОРОЖНЫЕ 3D-РАБОТЫ поддерживает ввод с клавиатуры тахеометра следующих элементов для разбивки в плане.

Элемент	Описание		
Прямая	Прямая задается следуюшими параметрами: • Начальная точка (Р1) и конечная точка (Р2) с известными плановыми координатами.		
	P2		
	Р1 Начальная точка Р2 Конечная точка		
Кривая	 Эта дуга задается следующими параметрами: Начальная точка (Р1) и конечная точка (Р2) с известными плановыми координатами. Радиус (R). Направление: по часовой стрелке (b) или против часовой стрелки (a). 		
	Р1 Начальная точка Р2 Конечная точка Я Радиус а Против часовой стрелки b По часовой стрелке		

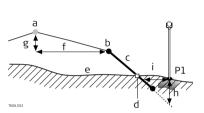
Элемент	Описание		
Переход- ная кривая/ Клотоида	 Клотоида является переходной кривой, радиус кривизны которой меняется вдоль ее протяжения. Эта кривая определяется следующими параметрами: Начальная точка (Р1) и конечная точка (Р2) с известными плановыми координатами. Радиус кривизны на начальной точке клотоиды (R) Параметры клотоид (А = √L · R) или длина (L) клотиды. Направление: по часовой стрелке или против часовой стрелки Тип переходной кривой: Входная или выходная клотоида 		
	Р1 Начальная точка Р2 Конечная точка В Радиус L Длина		


Элемент	Описание		
Виды переход- ных кривых	 Входная клотоида (Spiral in = A): Кривая с бесконечным радиусом кривизны в начальной точке и заданным радиусом кривизны в ее конце. Выходная клотоида (Spiral out = B): Кривая с заданным радиусом кривизны в начальной точке и бесконечным радиусом кривизны в ее конце. Частичная/овоидная кривая: Кривая с заданным радиусом кривизны в ее начале и другим радиусом в ее конце. 		
	А Входная кривая В Выходная кривая		

Вертикальные геометрические элементы Программа ДОРОЖНЫЕ 3D-РАБОТЫ поддерживает ввод с клавиатуры тахеометра следующих элементов для разбивки в плане.

Элемент	Описание		
Прямая	Прямая задается следуюшими параметрами: • Начальный пикетаж и отметка точки Р1. • Конечный пикетаж и отметка конечной точки Р2 или Длина (L) и Уклон (%)		
	P1 L P1 L P2 P2 P2 P2	P1 P2 L %	Начальная точка Конечная точка Длина Уклон
Переход-	Эта дуга задается следующими параметрами:		
ная	• Начальный пикетаж и отметка точ	ки Р1	•
кривая	• Конечный пикетаж и отметка конечной точки Р2		
	 Радиус (R). 		
	• Тип: выпуклая (гребень) или вогнут	гая (п	рогиб)
	a b R R	a b	Выпуклая Вогнутая
	P1 P2	P1	Начальная точка
	R R	P2	Конечная точка
	150X,651	R	Радиус

Элемент	Описание
Квадратическая парабола	Выбор варианта с квадратической параболой обладает тем преимуществом, что устанавливается постоянное изменение уклона и получается более "плавная" кривая. Квадратическая парабола определяется следующими параметрами: • Начальный пикетаж и отметка точки Р1. • Конечный пикетаж и отметка конечной точки Р2 • Параметр, либо Длина (L), уклон входящей прямой (Grade In) и уклон выходящей прямой (Grade Out).
	Р1 Начальная точка Р2 Конечная точка L Длина % Уклон


Комбинация горизонтальных и вертикальных геометрических элементов

Начало и конец пикетажа, а также точки касания (Tangent points) могут различаться для выноса проекта в плане и по высоте.

Элементов кривой

P1 Измеренная точка а

Горизонтальный створ

Точка гребня

Уклон

Точка кювета

Существующая поверхность

Заданное смещение

Заданная разность отметок

Выемка при заданном склоне

∧ Смещение к кювету

Элементы разбивки уклонов:

- a) Разбивка в плане - определяется заданными элементами пикетажа.
- b) Точка гребня - определяется заданными значениями правого/левого сдвига и разностью отметок.
- c) Уклон - это отношение двух величин, определяющее крутизну склона.
- d) Точка кювета - это точка пересечения между проектным откосом и существующей поверхностью. Точка гребня и точка кювета находятся на одном склоне.
- e) Существующая поверхность - это земная поверхность до начала строительных работ.

Выемка/Насыпь	Описание		
Выемки	d e e d	a) b) c) d) e)	Горизонтальный створ Точка гребня Уклон Точка кювета Существующая поверхность
Насыпь	c b a b c c c c c c c c c c c c c c c c	a) b) c) d) e)	Горизонтальный створ Точка гребня Уклон Точка кювета Существующая поверхность

6.13.3

Создание и загрузка файлов створа

Описание

Файлы горизонтальных и вертикальных створов создаются с помощью модуля Road Line Editor и загружаются в тахеометр при помощи модуля Data Exchange Manager FlexOffice.

Эти файлы можно также создавать автономно - на самом тахеометре.

Доступ

- 1. Выберите ____ Прогр. в Главном Меню.
- 2. Выберите ДОРОЖНЫЕ 3D-РАБОТЫ в ПРОГРАММЫ Меню.
- 3. Выполните предварительные настройки приложения. Обратитесь к разделу "5 Приложения Приступая к работе".

Выберите файл створов!

Поле	Описан	ие
Гориз.ство р	Список	имеющихся файлов с горизонтальными створами.
		Наличие данных для разбивки в плане является обязательным.
Верт.створ	Список	имеющихся файлов с вертикальными створами.
		Наличие файла вертикальной разбивки обязательным не является. Проектные отметки можно вводить и с клавиатуры.

Следующий шаг

- Нажмите НОВЫЙ, чтобы назвать или задать новый файл створа.
- Или нажмите ДАЛЕЕ для выбора имеющегося файла створа и перехода к экрану Задайте эл-ты Разб/Контр/Скл.

Задайте эл-ты Разб/Контр/Скл

Задайте эл-т	ы Ра	азб/Контр/Скл∣	Þ
Локальн			
Савиг Влево	:	0.250 m	
Сявиг Вправо	:	1.250 m	
Превышение	:	-1.000 m	
0пр. п-ж		10.000 m	
Приращение	:	40.000 m	
H	Исп	. проектную 🕪	
Н вручную	:	m	
РАЗБИВК КОНТ	РЛЬ	РАЗ_СКЛ ↓	

РАЗБИВК

Для запуска программы Разбивка.

контрль

Для запуска программы Проверка.

РАЗ СКЛ

Для запуска программы **Разбивка Уклона**.

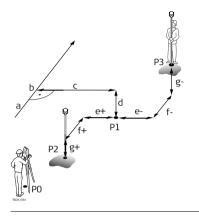
↓ кон скл

Для запуска программы **Проверка Уклона**,

Поле	Описание
Сдвиг Влево	Сдвиг в плане влево от горизонтального створа.
Сдвиг Вправо	Сдвиг в плане вправо от горизонтального створа.
Превыше- ние	Отклонение по вертикали, вниз или вверх, от горизонтального створа.
Опр.п-ж	Проектные данные для разбивочного пикетажа.
Прираще- ние	Величина, с которой будет наращиваться/уменьшаться проектный пикетаж в приложениях Разбивка и Разбивка склона.

Поле	Описание	
Н	Ввод Н вруч- ную	Опорная отметка для расчета высот. При выборе этого варианта заданная высотная отметка будет использоваться во всех подпрограммах.
	Исп.проект- ную Н	В этом варианте для выполнения вертикальной разбивки будет применяться заданная в проектном файле отметка.
Н вручную	Высота, испол	ьзуемя для Ввод Н вручную .

Следующий шаг


Выберите одну из опциональных клавиш: **РАЗБИВК**, **КОНТРЛЬ**, **РАЗ_СКЛ** или **↓ КОН_СКЛ**, для запуска соответствующего приложения.

6.13.4

Разбивка

Описание

Эта подпрограмма используется для разбивки точек относительно заданного створа. Превышения отсчитываются относительно вертикального створа или от введенной вручную отметки.

- P0 Точка установки инструмента (станция)
- Точка визирования P1
- P2 Измеренная точка
- Р3 Измеренная точка
- Горизонтальный створ а
- Проектный пикетаж
- Сдвиг
- Разность отметок
- ∆ Положительное значение сдвига
- Δ Сдвиг, минусовой
- ∆ Пикетаж, плюсовой
- Δ Пикетаж, минусовой
- q+ ∆ Высота, положительная
- q:
 - ∆ Высота, отрицательная

Доступ

Нажмите РАЗБИВК в окне Задайте эл-ты Разб/Контр/Скл.

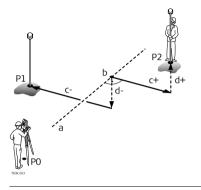
РАЗБИВКА

Чтбы найти (задать) коды, нажмите **FNC**/Избранное и выберите **СвобКо- ды**.

Поле	Описание		
Пикетаж	Задайте пикетаж для разбивки.		
ΔHz	Отклонение по углу: имеет знак +, если проектное положение разбивочной точки находится справа от точки установки отражателя.		
Δ 🚅	Горизонтальное отклонение: имеет знак +, если проектное положение точки находится дальше точки установки отражателя.		
ΔΗ	Отклонение по высоте: имеет знак +, если проектное положение точки находится выше точки установки отражателя.		

Поле	Описание
Δ3вено	Продольное отклонение: имеет знак +, если проектное положение точки находится дальше точки установки отражателя.
∆Сдвиг	Поперечное отклонение: имеет знак +, если проектное положение точки находится справа от точки установки отражателя.
Опред.Ү	Вычисленная координата Ү (на восток) разбивочной точки.
Опред.Х	Вычисленная координата X (на север) разбивочной точки.
Опред.Н	Вычисленная отметка (Н) разбивочной точки.

Следующий шаг


- Либо нажмите ВСЕ для измерения и записи.
- Или ESC для возврата к экрану Задайте эл-ты Разб/Контр/Скл.

6.13.5

Проверка

Описание

Эта подпрограмма использутся для исполнительного контроля (as-built checks). Контрольные точки могут измеряться или выбираться из памяти. В результате система выдаст значения пикетажа и смещений в плане, а также превышения относительно вертикального створа или введенной вручную высоты.

PΩ Точка установки инструмента

(станция)

P1 Точка визирования P2 Точка визирования

Горизонтальный створ а

Пикетаж h

C+ Положительное значение сдвига

Отрицательное значение сдвига C-Превышение, положительное d+

d

Превышение, отриц.

Заданные параметры пикетажа увеличения в подпрограмме Проверка игнорируются.

Доступ

Нажмите КОНТРЛЬ в окне Задайте эл-ты Разб/Контр/Скл.

Дорога-3D КОНТ-РОЛЬ

Поле	Описание
Сдвиг	Заданное горизонтальное смещение. Лево Правоили Центр.
Пикетаж	Текущий пикетаж от измеренной точки.
Сдвиг	Поперечное смещение от створа.
Превыше- ние	Разность между отметкой измеренной точки и заданной отметкой.
ΔΥ	Вычисленное расхождение координат Y измеренной точки и элемента створа.
ΔΧ	Вычисленное расхождение координат X измеренной точки и элемента створа.

Следующий шаг

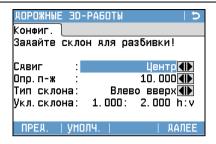
- Либо нажмите ВСЕ для измерения и записи.
- Или ESC для возврата к экрану Задайте эл-ты Разб/Контр/Скл.

6.13.6

Описание

Разбивка уклона

Эта подпрограмма используется для выноса в натуру точки кювета, которая является точкой пересечения заданного склона с существующей поверхностью. Склон всегда определяется от точки гребня. Если параметр Смещение вправо/влево и превышение не заданы в проектном пикетаже, то точка заданного пикетажа будет считаться точкой гребня (Hinge point).



- Р1 Измеренная точка
- а Горизонтальный створ
- b Заданное смещение
- с Заданная разность отметок
 - d Точка гребня
 - Заданный уклон
 - Точка кювета
- g: Существующая поверхность
- Δ Смещение к кювету
- i Выемка/подсыпка для точки кювета
- j Смещение относительно точки гребня
- k Смещение относительно проектной оси
- L Превышение относительно точки гребня
- m Превышение относительно проектной оси дороги

Доступ

Нажмите РАЗ_СКЛ в окне Задайте эл-ты Разб/Контр/Скл.

Задайте склон для разбивки!

Поле	Описание
Сдвиг	Сдвиг в плане от горизонтального створа для задания точки гребня.
Опр.п-ж	Заданный для разбивки пикетаж.
Тип склона	Тип склона. Обратитесь к разделу "Типы уклонов".
Уклон	Величина уклона. Обратитесь к разделу "Величина уклона".

Типы уклонов

Влево вверх Точка гребня Вправо вверх

Влево вниз Вправо вниз Вправо вниз

Влево вверх

Создание плоскости, направленной вверх и влево относительно заданной точки гребня.

Вправо вверх

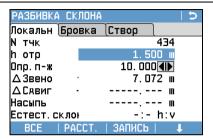
Создание плоскости, направленной вверх и вправо относительно заданной точки гребня.

Влево вниз

Создание плоскости, направленной вниз и влево относительно заданной точки гребня.

Вправо вниз

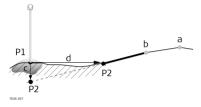
Создание плоскости, направленной вниз и вправо относительно заданной точки гребня.


Величина уклона

Величина уклона. Единицы измерения уклонов задаются в диалоговом окне **Региональные Настройки**. Обратитесь к разделу "4.2 Региональные Настройки".

Следующий шаг

Нажмите РАЗБИВКА СКЛОНА для перехода к меню РАЗБИВКА СКЛОНА.


РАЗБИВКА СКЛО-НА

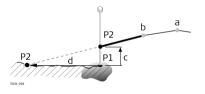
Поле	Описание
Опр. пике- тажа	Проектные данные для разбивочного пикетажа.
Δ3вено	Разница между проектным и текущим значением пикетажа.
∆Сдвиг	Расхождение в плане между точкой кювета проектного склона и текущей измеренной точкой.
Выем/Под сыпка	Расхождение по вертикали между точкой кювета проектного склона и текущей измеренной точкой. Выемка грунта необходима при положении измеренной точки выше проектной, а насыпь - в противном случае.
Сущ.склон	Измеренный уклон между точкой установки отражателя и точкой гребня.

Поле	Описание
См.бровки	Измеренное смещение относительно горизонтального створа, включая сдвиг вправо или влево.
ΔΗбровки	Превышение относительно точки гребня Это разность между заданной отметкой текущего пикетажа и измеренной отметкой с учетом заданного превышения.
	Наклонное расстояние от измеренной точки до точки гребня.
Высота	Высотная отметка текущей измеренной точки.
Текущий п- ж	Измеренный пикетаж.
Сдвиг створа	Измеренное смещение относительно горизонтального створа, без учета сдвига вправо или влево.
ΔΗ створа	Превышение относительно проектной оси дороги Это разность между заданной отметкой текущего пикетажа и измеренной отметкой без учета заданного превышения.
створа	Наклонное расстояние от измеренной точки до створа.

Смысл знаков + и -Выемки

а

P1 Измеренная точка


P2 Точка кювета

Горизонтальный створ Точка гребня

Выемка

 Δ Смещение к кювету

Насыпь

P1 Измеренная точка P2 Точка кювета

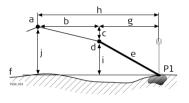
Горизонтальный створ а

Точка гребня

Насыпь

∆ Смещение к кювету

Следующий шаг


- Либо нажмите ВСЕ для измерения и записи.
- Или ESC для возврата к экрану Задайте эл-ты Разб/Контр/Скл.

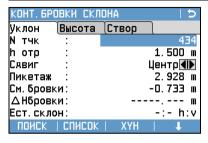
6.13.7

Проверка уклона

Описание

Эта подпрограмма применяется для исполнительного контроля (as-built checks) и получения информации об уклонах, например на существующей поверхности. Если параметр Смещение вправо/влево и превышение не заданы, то точка будет считаться точкой гребня (Hinge point).

- Р1 Измеренная точка
- а Горизонтальный створ
- b Заданное смещение
- Заданная разность отметок
- d d Точка гребня
- е Имеющийся уклон
- F Существующая поверхность
- g: Смещение относительно точки гребня
- h Смещение относительно проектной оси
- Превышение относительно точки гребня
- Превышение относительно проектной оси дороги



Заданные параметры пикетажа увеличения в подпрограмме Проверка игнорируются.

Доступ

Нажмите ↓ КОН СКЛ в окне Задайте эл-ты Разб/Контр/Скл.

КОНТ.БРОВКИ СКЛОНА

Поле	Описание
Сдвиг	Заданное горизонтальное смещение. Лево, Право или Центр.
Пикетаж	Текущий пикетаж от измеренной точки.
См.бровки	Смещение до бровки. Измеренное смещение относительно горизонтального створа, включая сдвиг вправо или влево.
ΔН бровки	Превышение относительно точки гребня Это разность между заданной отметкой текущего пикетажа и измеренной отметкой с учетом заданного превышения.
Естест.скл он	Измеренная величина уклона между измеренной точкой и точкой гребня.

Поле	Описание
	Наклонное расстояние от измеренной точки до точки гребня.
Н	Высотная отметка текущей измеренной точки.
Сдвиг створа	Измеренное смещение относительно горизонтального створа, без учета сдвига вправо или влево.
ΔН створа	Превышение относительно проектной оси дороги Это разность между заданной отметкой текущего пикетажа и измеренной отметкой без учета заданного превышения.
а створа	Наклонное расстояние от измеренной точки до створа.

Следующий шаг

- Либо нажмите ВСЕ для измерения и записи.
- Или ESC для возврата к экрану Задайте эл-ты Разб/Контр/Скл.
- либо на **ESC** для выхода из подпрограммы.

6.14 6.14.1

Программа Ход Общие сведения

Эту программу ПРОГРАММА ХОД можно запускать не более 15 раз. После этого потребуется оплатить и получить лицензионный код.

Описание

ПРОГРАММА ХОД приложение предназначено для создания сетей опорных точек в тех случаях, когда другие методы топографических съемок или выноса проектов в натуру не могут быть использованы.

Методы ПРОГРАММА ХОД включают 2D-трансформацию по Гельмерту, а также алгоритмы Компаса и правило Теодолита.

2D-трансформация по Гельмерту

Гельмертовская трансформация выполняется по двум опорным точкам. Этими точками должны быть начальная и конечная точки, либо точка замыкания и станция. Параметры сдвига, поворота и масштабирования будут вычислены и использованы при обработке хода.

Если Вы начинается выполнять измерения прямой задачи без первого ориентирного измерения, автоматически будет применена трансформация Гельмерта.

Компаса

Согласно правилу Компаса, координатная невязка будет распределяться пропорционально длинам сторон хода. При этом предполагается, что наибольшие погрешности возникают при больших длинах сторон. Данный метод также предполагает, что уровень точности угловых и линнейных измерений примерно одинаков.

Теодолита

Координатная невязка будет распределяться с учетом изменений Y и X. Этот метод предполагает, что углы измерялись точнее, чем расстояния.

ПРОГРАММА ХОД шаг за шагом

- 1. Запустить и настроить ПРОГРАММА ХОД.
- 2. Введите данные о станции.
- 3. Выберите начальный метод.
- 4. Сделайте измерения на заднюю точку или перейдите к 5..
- 5. Выполните измерения на переднюю по ходу точку.

- 6. Измерьте углы нужным числом приемов.
- 7. Перенесите инструмент на очередную по ходу станцию.

ПРОГРАММА ХОД ОПЦИИ

- При прокладке хода можно также делать измерения на боковые и контрольные точки, но в уравнивание контрольные точки включаться не будут.
- По завершении прокладки хода результаты будут выведены на дисплей и можно будет запустить его уравнивание.

6.14.2

Запуск и настройка Программы Ход

Доступ

- 1. Выберите прогр. в Главном Меню.
- 2. Выберите ТОВ ХОД в ПРОГРАММЫ меню.
- 3. Выполните предварительные настройки приложения.
 - F1 Выбор проекта:

Для каждого проекта может быть задан только один ход. Если в конкретном проекте уже имеется законченный ход (необязательно уравненный) уже имеется в выбранном проекте, то нужно задать другой проект. Обратитесь к разделу "5 Приложения - Приступая к работе".

F2 Допуски:

Исп. допуски: ДА активация допусков.

Можно задать следующие допуски: расхождение между полученным в результате измерений дирекционным углом на конечную точку привязки и его вычисленным по координатам значением, расхождение между измеренным и известным расстоянием до конечной точки привязки, и расхождения известных и вычисленных координат в плане и по высоте. Если в результатах уравнивания или в наблюдениях на контрольную точку будет обнаружен выход за эти допуски, то на дисплей выводится диалоговое окно с предупреждением об этом. Нажмите на ДАЛЕЕ для записи установленных допусков точности и возврата в окно Настройки.

4. Выберите **F4 Запуск** для запуска приложения.

До начала работы удалите из памяти ненужные более данные, чтобы освободить место для записи новых. Если в памяти окажется недостаточно свободного места, то измерения по ходу и результаты обработки будет некуда записывать! Сообщение об этом выдается, когда в памяти остается менее 10% свободного места.

Конфигурирование хода

Поле	Описание	
Номер хода	Имя нового хода.	
Описание	При желании можно дать описание.	
Оператор	Имя пользователя, который будет прокладывать новый ход.	

Поле	Описание	
Метод	3'П'П"3"	Измерения на все точки выполняются при круге лево, затем при круге право в обратном порядке.
	3'3"П"П'	Сначала выполняются измерения на заднюю точку при двух кругах (круг лево, затем круг право). На другие точки измерения выполняются в обратном порядке (круг право, затем круг лево).
	3'П'	На все точки измерения выполняются при одном положении круга (круг лево).
Число приемов	Число приемов. Ограничено десятью.	
Исп.доп.КЛ- КП	Подтверждение использования допуска для измерений, проводимых при двух кругах. Он проверяет допустимость расхождения между этими измерениями. При выходе за установленный допуск на дисплей выдается предупреждение об этом.	
Дпск.на КЛ- КП	Значение допустимого расхождения между измерениями при обоих кругах.	

Следующий шаг

Нажмите ДАЛЕЕ для подтверждения настроек хода и перейдите к экрану Введите данные о станции!.

Измерения в ходе-Введите данные о станции!

Поле	Описание	
Станция	Идентификатор станции.	
h инстр	Высота инструмента.	
Описание	Здесь, при необходимости, можно дать описание станции.	

Ход должен обязательно начинаться с твердой точки.

Следующий шаг

Нажмите **ДАЛЕЕ** для подтверждение инфомрации о станции и перейдите к меню **ПРОГРАММА ХОД - Выбор**.

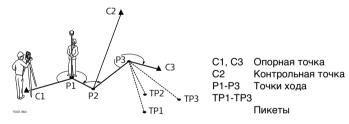
6.14.3

Выполнение измерений по ходу

Доступ

В меню ПРОГРАММА ХОД - Выбор выберите следующее:

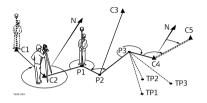
- **F1 Без известной задней точки**: для прокладки хода при отсутствии опорной задней точки. Измерения начинаются с наблюдений на переднюю точку.
- F2 С известной задней точкой: для прокладки хода с опорной задней точкой.
- F3 С известным азимутом: для прокладки хода, с ориентировкой по азимуту, заданному пользователем


С известной ЗТ

Начало хода с точки без известного ориентирного направления

- Измерения начинаются без наблюдений с твердой точки начала хода на другую твердую точку,
- а завершаются на другом твердом пункте, либо путем измерений на переднюю по ходу твердую точку.

Если координаты первой точки стояния неизвестны, можно запустить приложение УСТАНОВКА СТАНЦИИ. По завершении хода (прямой задачи) будет применена трансформация Гельмерта.


Если ход висячий, все вычисления базируются на ориентирном дирекционном угле.

С известной ЗТ

Начать ход с точки, имеющей опорное ориентирное направление

- Измерения начинаются с наблюдений на твердую точку.
- Завершите прокладку хода на твердой точке и, по возможности, наблюдениями на другой твердый пункт.

С1, С2 Опорная точка С4, С5 Опорная точка С3 Контрольная точка

Р1-Р3 Точки хода

TP1-TP3

Пикеты

N Северное направление

По известному азимуту

Начать ход с точки, имеющей известный дирекционный угол

- Установите прибор на известной точке, наведитесь на известное направление (например, шпиль колокольни) и задайте это направление как опорное. Часто так задают направление на 0.
- Завершайте ход на известной точке или на точке хода (тогда необходимо выполнить измерение на известную точку). Обратитесь к разделу "6.14.5 Завершение хода".

Если Вы используе текущее значение азимута, например, из приложения ОРИЕНТ., тогда просто подтвердите предложенное значение горизонтального угла в меню **Уст. Hz!**.

Измерения в ходе-Наведите на заднюю точку!

Поле	Описание
Задн Тч	Имя задней по ходу точки.
Примеча- ние	Описание задней точки.

Поле	Описание	
Станция	ия Идентификатор станции.	

Следующий шаг

В зависимости от выбранного метода измерений, по завершении измерения эран Наведите на заднюю точку! остается активным (для измерений на заднюю по ходу точку) при другом полуприеме или появлется экран Наведите на передн.точку!, проедлагающий выполнить измерения на точку, переднюю по ходу.

Измерения в ходе-Наведите на передн.точку!

Следующий шаг

В зависимости от выбранного метода измерений, по завершении измерения эран Наведите на передн.точку! остается активным (для измерений на переднюю по ходу точку) при другом полуприеме или появлется экран Наведите на заднюю точку!, проедлагающий выполнить измерения на точку, заднюю по ходу.

Прерывание приема наблюдений

Для того чтобы прервать наблюдения в приемах, нажмите на **ESC** для закрытия упомянутых выше окон. Появится экран **ПРОДОЛЖИТЬ С....**

продолжить с...

Поле	Описание
F1 Повторить посл. измерение	Повтор последнего измерения на заднюю или переднюю точку. При нажатии на эту кнопку последний результат будет удален из памяти.
F2 Повтор всех изм. на станции	Переход в окно наблюдений на самую первую точку. Последние измерения на этой станции будут стерты из памяти.

Поле	Описание
F3 Выход из программы	Возврат к Прогр. Меню . При этом данный ход остается активным и его проложение можно будет возобновить позднее. Последние измерения на данной станции будут стерты из памяти.
F4 ПРЕДЫДУЩ.	Возврат в предыдущее окно, где была нажата кнопка ESC .

Повторные измерения в приемах

Переключение между окнами наблюдений на заднюю и переднюю точку выполняется системой согласно заданным настройкам измерений несколькими приемами. Число приемов и положение ветикального круга относительно зрительной трубы индицируются в правом верхнем углу окна. Например 1/I означает, что выполняется первый прием при положении круга I.

6.14.4

Продолжение работы

Выполнено заданное число приемов

При достижении заданного числа, автоматически появляется экран **ПРОГРАММА ХОД - Выбор**. Контроль точности измерений. Можно включить конкретный прием в обработку или задать его повторение.

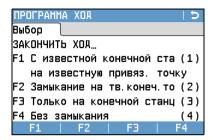
Продвижение по ходу

В окне ПРОГРАММА ХОД - Выбор выберите вариант продолжения хода, либо нажмите на ESC для переделки последней станции.

Поле	Описание
F1 Боковые точки	Эта возможность позволяет выполнять съемку прилегающей местности в процессе прокладки хода. Измеренные при этом точки записываются в память со специальным флажком ПРОГРАММА ХОД. После выполнения уравнивания хода, координаты таких точек будут автоматически обновлены. ЗАМКН Для выхода из меню Выполните изм. на боковую точку! и вощврата к ПРОГРАММА ХОД - Выбор.
F2 Переход на следующую станцию	Перенесите инструмент на очередную по ходу станцию. При этом выключать инструмент необязательно. Если прибор выключить и снова включить, появится сообщение ЕЩЕ НЕ ЗАКОНЧЕН ИЛИ НЕ ОБРАБОТАН ПРЕДЫДУЩИЙ ХОД - ВЫ ДЕЙСТВИТЕЛЬНО ХОТИТЕ НАЧАТЬ НОВЫЙ ХОД? ВСЕ ПРЕДЫДУЩИЕ РЕЗУЛЬТАТЫ БУДУТ ПЕРЕЗАПИСАНЫ!. Выбор варианта ДА приведет к открытию окна TRAVERSE для продолжения работы на следующей станции.
	Приветственное окно такое же, как в ВВОД ДАННЫХ О СТАНЦИИ. Идентификатор прежней передней точки, наблюдавшейся с предыдущей станции автоматически присваивается новой станции. Выполните все измерения на заднюю и переднюю по ходу точки заданным количеством приемов.

Поле	Описание	
F3 Измерения на контр. Точки	Эти измерения дают возможность регулярно проверять, не выходит ли ход за установленные для него допуски. Контрольные точки в обработку и уравнивание хода не включаются, но все результаты измерений контрольных точек сохраняются в памяти.	
	 Введите идентификатор контрольной точки и высоту установки отражателя на ней. Нажмите ДАЛЕЕ для перехода в следующее окно. Выполните измерения на контрольную точку. На дисплее появятся расхождения по всем трем координатам. При выходе за допуски, заданные для Программы Ход на дисплее появится предупреждение об этом. 	

Следующий шаг


Завершите ход, выбрав **ЗАМКН** в меню **Наведите на передн.точку!** после измерения на заднюю точку, но до измерения на переднюю по ходу точку.

6.14.5 Завершение хода

Доступ

Завершите ход, выбрав **ЗАМКН** в меню **Наведите на передн.точку!** после измерения на заднюю точку, но до измерения на переднюю по ходу точку.

ЗАКОНЧИТЬ ХОД...

F1-F4

Клавиши предназначены для выбора нужного пункта меню.

Поле	Описание	
F1 С известной	Замыкание ход путем измерений с конечной твердой точки на	
конечной стан-	привязочную твердую точку.	
ции на извест-	Этот вариант применим в тех случаях, когда конечная точка	
ную привяз.	хода имеет известные координаты и замыкание хода произво-	
точку	дится с нее путем наблюдений на твердый пункт.	
	При выборе этого варианта обязательно выполнять	
	измерения расстояний.	
	1) Введите данные по обеим точкам.	
	2) Выполните измерения на точку замыкания хода.	
	3) На дисплее появятся результаты вычислений.	

Поле	Описание			
F2 Замыкание	Замыка	Замыкание хода измерениями на твердую точку.		
на	Исполь	зуется при установке инструмента на точке с неизвест-		
тв.конеч.точку	ными к	оординатами, но при этом координаты точки замыкания		
	хода из	вестны.		
	1)	Введите данные о точке.		
	2)	2) Выполните измерения на точку замыкания хода.		
	3)	На дисплее появятся результаты вычислений.		
F3 Только на	Завершение хода просто на последней станции.			
конечной стан-	Используется при установке инструмента на точке завершения			
ции	хода с известными координатами.			
	1)	1) Введите данные о точке.		
	2)	На дисплее появятся результаты вычислений.		
F4 Без замыка-	Ход будет висячим. Последней станции хода при этом не будет.			
ния	1)	На дисплее появятся результаты вычислений.		

Следующий шаг

Выберите из меню ЗАКОНЧИТЬ ХОД... и перейдите к экрану ХОД - РЕЗУЛЬТАТЫ.

ХОД - РЕЗУЛЬТАТЫ

ХОА - РЕЗУЛЬТ	АТЫ	5
Рез-ат1 Рез-а	т2	
Номер хода	:	TRAV_2000
Нач. станция	:	201
Кон. станция	:	201
Число станций	:	3
Общая ялина		23.920 m
Точность 1D	:	1/13.3613
Точность 2D	:	1/1.2708
УРАВН. См. Аг	юк 60K.	ТЧК КонХол

УРАВН.

Запуск уравнительных вычислений. Кнопка недоступна, если ход не был замкнут.

См.Дпск

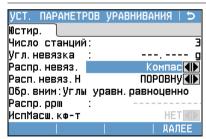
Просмотр установленных для хода допусков.

БОК.ТЧК

измерения на боковые точки.

КонХода

Запись результатов и заверщение хода.


Поле	Описание
Номер хода	Имя хода.
Нач. станция	Идентификатор начальной станции.
Кон. станция	Идентификатор конечной станции.
Число станций	Число станций в ходе.
Общая длина	Общая длина хода.
Точность 1D	Одномерная точность. 1/(Длина хода
	Незамыкание по высоте

Поле	Описание
Точность 2D	Двхмерная точность. 1/(Длина хода) Линейная невязка
Лин. невязка	Продольный сдвиг
Угл.невязка	Незамыкание по углам.
ΔΥ, ΔΧ, ΔΗ	Вычисленные координаты.

Следующий шаг

Выберите УРАВН. в меню ХОД - РЕЗУЛЬТАТЫ для уравнивания измерений.

УСТ. ПАРАМЕТРОВ УРАВНИВАНИЯ

Поле	Описание	Описание	
Число стан- ций	Число станций в ходе.		
Угл.невязка	Незамыкание	по углам.	
Распр.невяз.	Условия распределения невязок.		
	Углова	ая невязка распределяется поровну.	
	Компас	Для ходов, где точность угловых и линейных измерений сравнительно одинакова.	
	теодолит	Для ходов, где уровень точности угловых измерений выше, чем линейных.	
Расп.невяз.Н	Невязка по высоте может распределяться либо поровну, либо пропорционально длинам сторон, либо не распределяться вообще.		
Распр.ррт	Это значение РРМ, определенное по вычисленному расстоянию между начальной и конечной точкой, разделенное на измеренное расстояние.		
ИспМасш.кф- т	Использовать распределение вычисленной ppm.		

- В зависимости от количества измеренных точек вычисления могут занимать различное время. Во время вычислений на дисплей выводятся различные сообщения.
- Уравненные точки будут храниться в памяти как твердые, но к их идентификатору будет впереди будет добавляться дополнительный символ. Например, точка BS-154.В после уравнивания будет записана как CBS-154.В.
- По завершении уравнивания программа ПРОГРАММА ХОД закроется и произойдет возврат в окно ГЛАВНОЕ МЕНЮ.

Сообщения

На дисплее могут появляться следующие важные для работы сообщения и предупреждения:

Сообщения	Описание
Внутр. память почти пере- полнена! Хотите продол- жить?	Это сообщение выводится в том случае, когда в памяти остается менее 10% свободного места. До начала работы удалите из памяти ненужные более данные, чтобы освободить место для записи новых. Если в памяти окажется недостаточно свободного места, то измерения по ходу и результаты обработки будет некуда записывать!
Данный проект уже содержит Уравненный ход. Выберите другой проект!	Для каждого проекта может быть задан только один ход. Следует выбрать другой проект.

Сообщения	Описание
ЕЩЕ НЕ ЗАКОНЧЕН ИЛИ НЕ ОБРАБОТАН ПРЕДЫДУЩИЙ ХОД - Хотите продолжить?	Последний выход из программы ПРОГРАММА ХОД был выполнен без замыкания хода. Прокладку хода можно продолжать с новой станции, можно оставить ход незаконченным, либо начать новый ход с перезаписью всех данных незаконченного хода.
ВЫ ДЕЙСТВИТЕЛЬНО ХОТИТЕ НАЧАТЬ НОВЫЙ ХОД? ВСЕ ПРЕДЫДУЩИЕ РЕЗУЛЬТАТЫ БУДУТ ПЕРЕЗАПИСАНЫ!	При утвердительном ответе на этот запрос будет начат новый ход с перезаписью всех данных незаконченного хода.
Переделаем последнюю станцию? Предыдущие результаты будут перезапи- саны новыми!	При утвердительном ответе на этот запрос произойдет возврат в окно наблюдений на первую точку с предыдущей станции. Последние измерения на этой станции будут стерты из памяти.
Выйти из программы Ход? Текущие данные о станции будут утеряны!!!	Запрос на закрытие приложения и переход в окно ГЛАВНОЕ МЕНЮ. Впоследствии можно вернуться к продолжению прокладки хода, но данные о текущей станции будут утеряны.

Сообщения	Описание
Недопустимые значения!	Превышены заданные допуски измерений. При отрицательном ответе на этот запрос можно заново выполнить вычисления.
Точки хода перевычислены и заново записаны	Это информационное сообщение выдается по завершении процесса уравнивания.

7

Избранное

7.1

Общие сведения

Описание

Избранное можно открыть, нажав **FNC**/Кнопка избранное, Мали № в любом меню измерений.

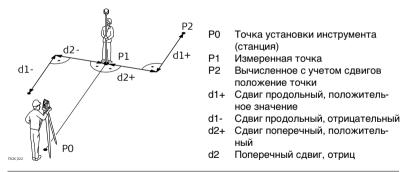
- Клавиша FNC/Избранное открывает Избранное Меню, где можно выбрать и приписать ей соответствующую функцию.
- Мили активирует функцию, прописанную для этой кнопки. Можно приписать кнопке любую функцию в Избранное Меню. Обратитесь к разделу "4.1 Рабочие настройки".

Избранное

 Символ, который не доступен в избранном будет отображаться вычеркнутым.

Избранное	Описание
Гл. меню	Возврат в окно ГЛАВНОЕ МЕНЮ.
Уровень	Активизация лазерного отвеса и электронного уровня. Обратитесь к разделу "Горизонтирование с помощью электронного уровня".
Сдвиг	Обратитесь к разделу "7.2 Сдвиг цели".

Избранное	Описание
Удал Зап	Удаление последнего записанного блока данных. Таким блоком может быть набор данных измерений или блок кодов объектов.
	Удаление последней записи не может быть отменено! Удалять можно только те блоки, которые были созданы в приложении СЪЕМКА и УСК.СЪЕМКА.
СвобКоды	Запускает приложение для выбора кода из списка или для ввода нового кода. Та же функция, что и у функ. клавши КОД .
Блок PIN	Обратитесь к разделу "9.5 Защита прибора PIN-кодом".
€ Отр/Ботр	Переключение между режимами работы дальномера EDM. Обратитесь к разделу "4.5 НАСТРОЙКИ EDM". Доступно для приборов, которые работают в безотражательном режиме.
<mark>Å →</mark> Лаз.Визир	Включение или отключение подсветки целевой точки лазерным лучом. Доступно для приборов, которые работают в безотражательном режиме.
Q EDM-слеж	Обратитесь к разделу "7.5 EDM Слежение".


Избранное	Описание
СигнОтраж	Индикация силы отраженного сигнала.
Т Пер-ча H	Передача НОбратитесь к разделу "6.2 УСТАНОВКА СТАНЦИИ".
Скрыт тчк	Обратитесь к разделу "7.3 Скрытая точка".
Косв.изм	Обратитесь к разделу "7.4 Проверка привязки".
КонЗадТ ч	Обратитесь к разделу "7.6 Проверка задней точки".
Подсвет.	Включение-выключение подсветки клавиатуры. Доступно только для цветного сенсорного дисплея.
Сенсор	Выключение-включение сенсорного экрана. Доступно только для цветного сенсорного дисплея.
ЕД.ДЛИН	Выбор единиц измерения расстояний. Для пользовательских кнопок.
ЕД.УГЛОВ	Выбор единиц измерения углов. Для пользовательских кнопок.

7.2 7 2 1

Сдвиг цели Общие сведения

Описание

С помощью этой функции можно определять координаты точки, на которой невозможно установить отражатель или на которую невозможно навести трубу тахеометра. Значения сдвигов (продольный, поперечный и по высоте) можно ввести с клавиатуры. При этом выполняются расчеты углов и расстояний для определения положения целевой точки.

Доступ

1. Нажмите **FNC**/Избранное, находясь внутри прикладной программы.

2. Выберите Сдвиг в Избранное меню.

Укажите значения сдвигов

умолч.

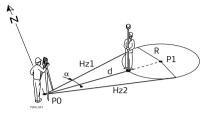
Для сброса всех значений на 0.

ЦИЛИНДР

Ввод параметров цилиндрического сдвига.

Поле	Описание	
Сдв.Попе- реч	Перпендикулярный сдвиг Имеет знак плюс, если сдвинутая точка находится правее измеренной точки.	
Сдв.Продо л	Продольный сдвиг Имеет знак плюс, если сдвинутая точка находится за только что измеренной точкой.	
Сдв.Высо- тн	Смещение по высоте Имеет знак плюс, если отметка сдвинутой точки больше, чем отметка точки измеренной.	
Режим	Период времени, в течение которого параметры сдвига будут применимы.	

Поле	Описание	
	Сброс после Зап.	Значения сдвигов переустанавливаются на 0 после записи точки.
	Постоянно	Значения сдвигов постоянно для всех будущих измерений.
	При выходе и	з приложения величины сдвига всегда обнуляются.

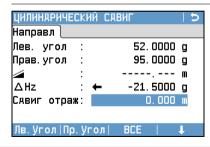

- Нажмите ДАЛЕЕ для вычисления исправленных значений и возврата в то приложение, откуда эта подпрограма была вызвана. Исправленные углы и расстояния выводятся на дисплей сразу после того, как будет измерено или взято из памяти.
- Можно также нажать ЦИЛИНДР для ввода цилиндрических смещений. Обратитесь к разделу "7.2.2 Циллиндрический сдвиг".

7.2.2

Циллиндрический сдвиг

Описание

Эта подпрограмма позволяет определять координаты центральной точки объектов, имеющих цилиндрическую форму, и радиус этого цилиндра. Выполните измерение горизонтального угла между точками на левом и правом краях такого объекта, а также расстояние до него.


- Ро Точка установки инструмента (станция)
- Р1 Центральная точка циллиндра Hz1 Отсчет по горизонтальному кругу на точку левого края объекта
- на точку правого края объекта d Расстояние до точки объекта, расположенной посредине между

Отсчет по горизонтальному кругу

- левым и правым краем г Радиус цилиндра
- α Азимут направлениями Hz1 и Hz2.

Доступ ЦИЛИНДРИЧЕС-КИЙ СДВИГ

Нажмите ЦИЛИНДР в окне Сдвиг.

Лв.Угол

Hz2

Измерение на левый край объекта. **Пр.Угол**

Измерение на правый край объекта.

Поле	Описание
Лев. угол	Измеренное горизонтальное направление на левый край объекта. Наведите вертикальную нить сетки на левый край объекта и нажмите на Лв.Угол
Прав.угол	Измеренное горизонтальное направление на правый край объекта. Наведите вертикальную нить сетки на правый край объекта и нажмите на Пр.Угол .
ΔHz	Угол наведения. Поверните тахеометр вокруг его оси до получения Δ Hz, равного нулю, - для наведения на центральную точку цилиндрического объекта.
Сдвиг отраж	Это расстояние между центром отражателя и поверхностью объекта измерений. При безотражательных измерениях данной величине автоматически присваивается нулевое значение.

Следующий шаг

Когда ΔHz равно нулю, нажмите **BCE** для завершения измерения и вывода результатов.

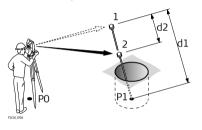
ЦИЛИНДР. СДВИГ -РЕЗУЛЬТАТЫ

ЗАВЕРШ.

Запись результатов и возврат к меню Сдвиг.

новый

Определение параметров нового цилиндрического объекта.


Поле	Описание
N тчк	Идентификатор точки центра.
Υ	Значение координаты Ү центральной точки.
X	Значение координаты X центральной точки.
Н	Отметка точки установки отражателя. Внимание: Это не отметка центральной точки!
Радиус	Радиус цилиндра.

7.3

Скрытая точка

Описание

Данная функция используется для определения координат точек, на которые невозможно выполнить непосредственные измерения. Для этого используется специальная рейка.

- Р0 Точка установки инструмента (станция)
- Р1 TPS Скрытая точка
- 1-2 Отражатели 1 и 2
- d1 Расстояние между отражателем 1 и скрытой точкой
- d2 Расстояние между отражателем 1 и 2

Доступ

- 1. Нажмите **FNC**/Избранное, находясь внутри прикладной программы.
- 2. Выберите Скрыт тчк из Избранное Меню.
- При необходимости нажмите **Bex/EDM** и задайте параметры рейк или дальномера.

Скрытая точка -ПОДГОТОВКА РЕЙКИ

Поле	Описание
Режим EDM	Изменение режима работы EDM.

Поле	Описание
Тип отража- теля	Изменение типа используемого отражателя.
Пост.слагае- мое	Индикация значения постоянного слагаемого отражателя.
Длина рейки	Общая длина рейки, установленной на скрытой точке.
Расст.R1-R2	Расстояние между центрами отражателей R1 и R2
Доп.измер.	Допуск на расхождение между известным и измеренным расстоянием между отражателями. При выходе за установленный допуск на дисплей выдается предупреждение об этом.

Следующий шаг

В меню Скрытая точка выполните измерения на первый и второй отражатели при помощи ВСЕ, тогда появится экран НЕДОСТУПНАЯ ТОЧКА: РЕЗУЛЬТАТЫ.

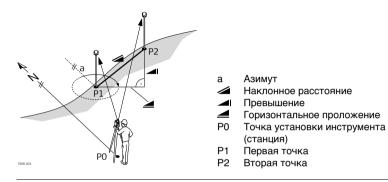
НЕДОСТУПНАЯ ТОЧКА: РЕЗУЛЬТА-ТЫ

В этом окне индицируются значения прямоугольных координат и высотная отметка скрытой точки.

ЗАВЕРШ.

Для записи результатов и возврата к программе, в которой была нажата кнопка **FNC**/избранное.

новый


Для возврата в меню **Скрытая** точка.

7.4

Описание

Проверка привязки

С помощью этой функции можно вычислять наклонные расстояния и горизонтальные проложения между двумя измеренными точками, превышения, уклоны, приращения координат и дирекционные углы между ними. Для работы этой функции требуется выполнить дальномерные измерения на эти точки.

Доступ

- 1. Нажмите **FNC**/Избранное, находясь внутри прикладной программы.
- 2. Выберите Косв.измв Избранное меню.

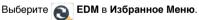
Контроль

Поле	Описание
ДирУгол	Разность дирекционных углов на эти две точки.
Уклон	Уклон между точками.
_	Разность в горизонтальных проложениях до этих двух точек.

Поле	Описание
4	Разность наклонных расстояниях до этих двух точек.
Δ 📶	Разность отметок этих двух точек.

Сообщения

На дисплее могут появляться следующие важные для работы сообщения и предупреждения:


Сообщения	Описание
Необходимы два измерения!	Невозможно выполнить вычисления при наличии менее двух измерений.

7.5

EDM Слежение

Доступ

- Нажмите **FNC**/Избранное, находясь внутри прикладной программы.

Описание

Эта функция служит для активизации или отключения режима слежения. Новый выбор показывается на дисплее в течение примерно одной секунды, а затем принимается тахеометром. Включение и отключение режима трекинга может выполняться только при установленных на конкретный момент режиме EDM и типе отражателя. Можно использовать следующие варианты:

Режим EDM	Слежение выключено! <=> Слежение включено!
Отражатель	Станд.отражатель <=> Режим трекинга / Быстр.режим <=> Режим трекинга
Без отража- теля	Ст.безотр.режим <=> Ст.реж.трекинга

Последняя настройка режима остается активной и после выключения инструмента.

7.6 Проверка задней точки

Описание

Функция позволяет выполнить повторные измерения на точки, использованные в Установке Станции. Такую проверку полезно выполнить для внесения возможных уточнений в результаты.

Доступ

- 1. Нажмите **FNC**/Избранное, находясь внутри прикладной программы.
- 2. Выберите **КонЗадТч** в **Избранное меню**.

Проверка Задней Точки

Это меню совпадает с меню РАЗБИВКА, за исключением того, что идентификаторы точек соответствуют последним ориентировкам. Обратитесь к разделу "6.4 РАЗБИВКА" для получения сведений о меню.

При установке станции по засечке, проверьте систему координат, в которой даны координаты точек из списка.

8 Кодирование

8.1 Кодирование

Описание

Коды содержат информацию о зарегистрированных точках. С помощью кодирования точки можно объединять в тематические группы, что значительно облегчает последующую обработку.

Коды сохраняются в списках кодов, каждый список может содержать до 200 кодов.

Создание списка кодов

Список кодов можно создать:

• в приборе: Выберите

МЕНЮ РАБОТЫ С ФАИЛАМИ Меню.

Управл. в Главном Меню. Выберите

Bo FlexOffice

Списки кодов можно импортировать и экспортировать через USB накопитель во FlexOffice. Прочтите разделы "10.3 Импорт данных" и "10.2 Экспорт данных".

GSI кодирование

Коды всегда хранятся как "свободные" (WI41-49), это означает, что они не связаны напрямую с точками. Они записываются перед выполнением измерений или по их завершении - в зависимости от выбранных настроек. Коды точек (WI71-79) недоступны.

Код обязательно прописывается каждому измерению, если он показан в поле **Код:** Для того, чтобы не прописывать код поле **Код:** нужно очистить. С этой целью

можно задать автоматическую очистку поля Код. Обратитесь к разделу "4.3 Настройки данных".

Доступ

- Или выберите Q-съемка в Глвном Меню, а потом нажмите ↓ КОД или перейдите на страницу 4/4 для черно-белого дисплея или на вкладке Код для цветного сенсорного дисплея.
- или нажмите **FNC** и выберите **ЕВ КОД**.

Кодирование

ЗАПИСЬ

Служит для регистрации кодов без выполнения измерений.

Доб.Сп.

Позволяет добавлять введенный код к списку кодов.

ДАЛЕЕ

Позволяет записать код вместе с измерением.

Поле	Описание
Поиск	Имя кода. После ввода кода система будет искать код с таким же именем и выведет его в поле для кодов. В том случае, когда такого кода еще нет, введенное имя будет прописано новому коду. его можно добавить, нажав Доб.Сп
код	Список имеющихся в памяти кодов.
Б. Код	Быстрое двухразрядное кодирование. Обратитесь к разделу "8.2 Быстрые коды".
Описание	Дополнительная информация.
Info 1 Ha Info 8	Строки для ввода и редактирования дополнительной информации. Предназначены для описания связанных с кодом атрибутов.

Расширить/Редактировать коды

Любому коду можно задать описание и до 8 атрибутов с максимум 16 символами. Существующие атрибуты кодов, отображаемые в полях **Info 1** в **Info 8**, можно переписать, за некоторыми исключениями:

Редактор списков кодов из программы FlexOffice может прописывать атрибутам их статус.

- Атрибуты со статусом "fixed" изменить нельзя. Их невозможно перезаписывать и редактировать.
- Атрибуты со статусом "Mandatory" (Обязательный) требуют их задания или подтверждения предложенного системой варианта.
- Атрибуты со статусом "Normal" можно редактировать без каких-либо ограничений.

8.2 Быстрые коды

Возможности

TS02*plus* -

TS06 plus ✓

T509*plus* √

Описание

С помощью функции быстрого кодирования нужный код можно найти в памяти, введя его с клавиатуры. Код задается двузначным числом, после его задания запускаются измерения на точку с последующим сохранением результатов и прописанного им кода.

Можно использовать до 99 "быстрых" кодов.

Быстрый код присваивается при поздании кода в меню **Кодирование**, в менеджере кодов во FlexOffice или присваивается согласно определенному порядку, например 01 -> первый код из списка... 10 -> десятый код из списка.

Доступ

- 1. Выберите прогр. в Главное Меню.
- 2. Выберите 🛊 🧢 СЪЕМКА в ПРОГРАММЫ.
- 3. Нажмите **↓ Б. Код**.

Быстрое кодирование - пошаговые операции

- Нажмите **↓ Б. Код**.
- 2. Введите с клавиатуры двузначное число.

Нужно обязательно вводить две цифры, даже если в Codelist Manager прописан код в одну цифру. Например для кода 4 -> введите 04.

- 3. Теперь код выбран, измерения выполнены и все данные записаны в память. По завершении измерений имя выбранного кода будет показано на дисплее.
- 4. Нажмите **↓ Б. Код**, чтобы заокнчить быстрое кодироывание.

Сообщения

На дисплее могут появляться следующие важные для работы сообщения и предупреждения:

Сообщения	Описание
Невозможно редакт.атри- буты!	Этот атрибут имеет статус фиксированного, что не допускает его редактирование.
Отсутствует список кодов!	В памяти не найден список кодов. Автоматически происходит переход к режиму ручного ввода кодов и атрибутов.
Данный код не найден!	Введенному числу не удалось присвоить код.

FlexOffice

Списки кодов достаточно легко создавать и обновлять с помощью программы FlexOffice.

9 9.1

Инструменты

•••

Уравнивание

Описание

В меню ПОВЕРКИ/ЮСТИРОВКИ доступен ряд средств для выполнения электронных юстировок и для задания сообщений, напоминающих о необходимости тех или иных поверок и юстировок. С помощью этих средств можно постоянно поддерживать точность измерений вашим тахеометром.

Доступ

- 3. Выберите нужную опцию юстировок в меню ПОВЕРКИ/ЮСТИРОВКИ.

Опции юстировок

В меню ПОВЕРКИ/ЮСТИРОВКИ доступны несколько опций юстировок.

Раздел меню	Описание
КОЛЛИМАЦИ- ОННАЯ ОШИБ- КА	Обратитесь к разделу "11.3 Юстировка линии визирования и ошибки места нуля".
МЕСТО НУЛЯ (ЗЕНИТА)	Обратитесь к разделу "11.3 Юстировка линии визирования и ошибки места нуля".
КОМПЕНСАТОР	Обратитесь к разделу "11.4 Юстировка компенсатора".

Раздел меню	Описание
Наклон оси вращения трубы	Обратитесь к разделу "11.5 Юстировка вертикальной оси прибора".
ТЕКУЩИЕ КАЛИБР. ЗНАЧЕНИЯ	Здесь индицируются текущие значения поверочных параметров для коллимации, места нуля и наклона оси вращения Tilt Axis.
ЗАДАТЬ НАПО- МИНАНИЕ О ПОВЕРКАХ	Здесь определяется промежуток времени между проведением основных поверок тахеометра, на основании которого будет выдаваться сообщение о необходимости проведения очередных поверок. Варианты: Никогда, 2 недели, 1 месяц, 3 месяца, 6 мес., 12 мес Сообщение о необходимости проведения поверок будет выводиться на дисплей при включении тахеометра - по истечении установленного срока.

9.2 Порядок запуска

Описание

С помощью инструментов Запуск можно изменять порядок работы тахеометра после его включения и последовательность нажатия на клавиши при этом. Это значит, что можно задать вывод на дисплей нужного окна сразу после закрытия

меню **Уровень и Отвес** после окна **ГЛАВНОЕ МЕНЮ**. Например, можно задать вывод окна **МЕНЮ НАСТРОЕК** для настройки работы тахеометра.

Доступ

- 1. Выберите инструм в Главном Меню.
- 2. Выберите 3апуск в МЕНЮ ИНСТРУМЕНТОВ.

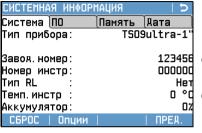
Изменение порядка действий при включении

- 1. Нажмите ЗАПИСЬ в окне ПОРЯДОК ДЕЙСТВИЙ ПРИ ВКЛЮЧЕНИИ.
- 2. Кнопкой **ДАЛЕЕ** можно подвердить получение информационного сообщения и начать запись нового порядка действий.
- 3. Нажатие нужных клавиш (максимум 64) будет записано для задания нового порядка действий при включении. Для завершения записи нажмите на **ESC**.
- Если автоматический запуск Статус имеет статус Активно, то записанный порядок нажатия клавиш будет выполняться автоматически при включении тахеометра.

Автоматический порядок действий при включении приводит к тем же результатам, что и при нажатии клавиш вручную. Некоторые из настроек прибора все же не могут быть выполнены подобным образом. Такие записи, как автоматическая установка **Реж.ЕDM**: **Быстр.режим** после включения прибора, не допускаются.

9.3 Системная информация

Описание Экран СисИнфо выводит информацию о инструменте, программном обеспечении и системе, а также дату и время обновления.

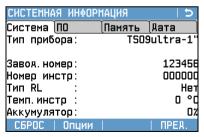

Укажите даные относящиеся к прибору: тип интсрумента, серийный номер, номер оборудования, версию ПО и номер, по которому будет вестись связь с технической поддержкой.

Доступ 1. Выберите инструм в Главном Меню.

2. Выберите СисИнфо в МЕНЮ ИНСТРУМЕНТОВ.

СИСТЕМНАЯ Страница 1/4 или Система ИНФОРМАЦИЯ В этом окне выдаются свед.

В этом окне выдаются сведения о тахеометре и установленной на нем операционной системе.


СБРОС

Для сброса всех настроек к заводским

Опции

Для отображения конструктивных опций.

Страница 2/4 или ПО

ПО

На дисплей выводится список всех прикладных программах, с которыми можно работать на тахеометре. Галочка обозначает наличии лицензии на программу.

Поле	Описание	
Встр. ПО	Версия установленного на приборе ПО.	
Версия сборки	Номер сборки встроенного ПО.	
Активный язык	Активный язык интерфейса и номер его версии.	
ПО дальномера	Номер версии программного обеспечения дальномера EDM.	
Опер.система	Отображение операционной системы.	

Страница 3/4 илиПамять

выводится такая информация о содержании памяти, как число записанных в нее станций и твердых точек проекта, количество блоков данных, например, измеренных точек или кодов. Показывается также объем занятой данными памяти.

Перед выбором операции **ФОРМАТ** для форматирования внутренней памяти убедитесь в том, что все нужные данные из нее скопированы на компьютер. При форматировании памяти из нее будут удалены все проекты (Jobs), форматы, списки кодов, файл настроек, используемые языки и встроенное программное обеспечение.

Несмотря на автоматическую дефрагментацию. память со временем фрагментируется. Пожалуйста, время от времени форматируйте внутреннюю память для поддержания работоспособности прибора.

Страница 4/4 или Дата

Поле	Описание
Конец фирм.ТО	Здесь показывается дата истечения конракта по техническому обслуживанию тахеометра.
Следующ. ТО	Показывается дата следующей плановой сервисной проверки. Поле может быть невидимым.

9.4

Лицензионные ключи

Описание

Эти ключи требуются для полноценного использования всех аппаратных и программных функций тахеометра. На всех моделях лицензионные ключи могут вводиться с клавиатуры или загружаться из программы FlexOffice. Для тахеометров, где имеется Коммуникационный блок, лицензионные ключи могут считываться с USB-флэшки.

Доступ

1. Выберите

2. Выберите

ЛицКлюч в МЕНЮ ИНСТРУМЕНТОВ.

Введите пароль

Поле	Описание
Метод	Способ ввода лицензионного ключа. Или Ручной ввод или Загр.файл ключей .
Ключ	Лицензионный ключ Доступен при Метод: Ручной ввод.

 Выбор УДАЛИТЬ в этом окне означает удаление всех лицензионных ключей на поддержку самого тахеометра и установленного программного обеспечения.
 При загрузке ПО с USB-накопителя, лицензионный ключ необходимо сохранить в папке System.

9.5

Защита прибора PIN-кодом

Описание

Защитить тахеометр от несанкционированного использования можно с помощью кода Personal Identification Number (PIN). Если такая защита на тахеометре установлена, то при попытке его включения будет выдаваться запрос на ввод PIN-кода. При пятикратном ошибочном вводе PIN-кода система потребует ввести код Personal UnblocKing (PUK). Этот код имеется в сопровождающей ваш тахеометр документации.

Активизация PINкода

- 1. Выберите Инструм в Главное Меню.
- 2. Выберите PIN в МЕНЮ ИНСТРУМЕНТОВ.
- 3. Активируйте защитный PIN-код в Использ. PIN-код: Вкл..

- 4. Укажите номер PIN (до 6 символов) в поле Новый PIN-код field.
- Нажмите ДАЛЕЕ.

Теперь инструмент защищен от несанкционированного использования. Потребуется вводить PIN-код при каждом включении тахеометра.

шаг за шагом

Если защита по PIN-коду активна, то можно заблокировать работу тахеометра в любом из запущенных приложений без его выключения.

- 1. Нажмите **FNC**/Избранное, находясь внутри прикладной программы.
- 2. Выберите **Блок PIN** в **Избранное меню**.

Ввод кода PUK

Если PIN-код введен неверно пять раз, система выдаст запрос на ввод кода PUK Этот код имеется в сопровождающей ваш тахеометр документации. Если введен правильный код PUK, то тахеометр включится, а PIN-код будет сброшен на заводское значение 0 и Использ. PIN-код: Выкл.

Деактивизация PIN-кода

- 2. Выберите **Блок PIN** в **МЕНЮ ИНСТРУМЕНТОВ**.
- 3. Укажите PIN в **PIN-код:**.
- 4. Нажмите ДАЛЕЕ.
- 5. Активируйте защитный PIN-код в **Использ. PIN-код**: **Выкл.**.
- 6. Нажмите ДАЛЕЕ.

Теперь инструмент больше не зашищен от несанкционированного использования.

9.6

Описание

Для установки на тахеометре новых приложений или интерфейсных языков. подключите его к компьютеру с уставновленной на нем FlexOffice и используйте программу FlexOffice Software Upload. Для получения дополнительной информации о FlexOffice. воспользуйтесь системой интерактивной помощи программы. Для тахеометров, где имеется Коммуникационный блок, лицензионные ключи могут считываться с USB-флэшки Ниже описан процесс этой загрузки.

Доступ

Загрузка ПО

- Выберите мнструм в Главном Меню.
- 2. Выберите ___ Загр. ПО в МЕНЮ ИНСТРУМЕНТОВ.

Ни в коем случае не отключайте питание в процессе загрузки системного ПО. Уровень зарядки аккумулятора в начале загрузки не должен быть ниже 75% его емкости.

Загрузка системного ПО и интерфейсных языков

Все файлы программного обеспечения и интерфейсных языков должны храниться в этой папке для того, чтобы их можно было передавать на тахеометр.

- Для загрузки ПО и языков, выберите F1 Системное ПО. Появится экран Выберите файл!.
 Для загрузки языков выберите F2 Только языковые файлы и сразу перейдите к шагу 4..
- 2. Выберите файл програмного обеспечения в системной папке USB-карты.
- 3. Нажмите ДАЛЕЕ.
- На дисплее появится окно Загрузите языковые файлы!, в котором будут показаны все файлы интерфейсных языков, имеющиеся в системной папке USB-флэшки. Выберите ДА или НЕТ для загрузки файла языка. По крайней мере, для одного из языков должно быть задано ДА.
- 5. Нажмите ДАЛЕЕ.
- 6. По завершении загрузки система автоматически закроется и затем запустится вновь.

10

10.1

Управление данными МЕНЮ РАБОТЫ С ФАЙЛАМИ

Доступ

Выберите 🚤 Управл. в Главном Меню.

МЕНЮ РАБОТЫ С ФАЙЛАМИ

В МЕНЮ РАБОТЫ С ФАЙЛАМИ Меню работа с файлами предоставляет доступ ко всем функциям ввода, редактирования, проверки и удаленния данных при работе в поле.

Раздел меню	Описание	
Проект	Создание, просмотр и удаление проектов. Проект представляет собой набор данных различных типов, например, информацию о твердых точках, измерениях и кодах. Проект оределяется своим именем и именем пользователя. Система сама присваивает проекту дату и время его создания.	
Твд точки	Создание, просмотр файлов твердых точек и удаление записей из них. Твердые точки определяются, как минимум, их идентификаторами и координатами.	
Измерения	Просмотр и удаление результатов измерений. Эти результаты хранятся во встроенной памяти, их поиск можно выполнять по имени точки или путем просмотра списка всех точек проекта. Можно редактировать PtID, час, код и свойства кода.	
	Если свойства точки были изменены, в новых вычислениях участвуют новые свойства точки. Однако, уже сохраненные вычисления не будут обновляться и пересчитываться.	
Коды	Создание, просмотр, редактирование и удаление кодов. Любому коду можно задать описание и до 8 атрибутов с максимум 16 символами.	
Форматы	Просмотр и удаление форматных файлов.	

Раздел меню	Описание	
Удал Пркт	Удаление из памяти выбранных проектов, а также твердых точек и результатов измерений из конкретного проекта или из всех проектов.	
	Очистку памяти отменить невозможно. После подтверждения этой операции все данные будут удалены без возможности восстановления.	
USB-флеш	Просмотр, удаление, переименование и создание директорий и файлов, имеющихся на USB-флэшке. Эта функция доступна только на инструментах с Крышкой коммуникационного блока и при подключенной USB-флэшке. Прочтите разделы "10.4 Использование USB-флэшки" и "Приложение В Структура папок".	

10.2

Экспорт данных

Описание

Любые проекты, форматные файлы, наборы настроек и списки кодов могут экспортироваться из памяти инструмента. Все эти данные можно экспортировать с помощью следующих средств:

Серийный порт RS232

К этому порту можно подключать различные устройства, например, ноутбук. На этих устройствах, должна быть установлена программа FlexOffice или другая аналогичная программа.

Если подключенное устройство работает слишком медленно, возможна потеря экспортируемых данных. В этом беспротокольном варианте передачи данных инструмент не получает никакой информации о работе подключенного устройства. Это значит, что отсутствует контроль хода передачи данных.

Порт USB

Для приборов, которые имеют Коммуникационный блок.

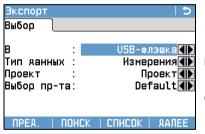
Любое USB-устройство может быть подключено к этому порту под крышку коммуникационного блока. На этих устройствах, должна быть установлена программа FlexOffice или другая аналогичная программа.

USB-флэшка

Для приборов, которые имеют Коммуникационный блок. USB-флэшку можно вставлять в USB-порт под крышкой коммуникационного блока и извлекать из-под крышки коммуникационного блока. Для выполнения передачи данных не требуется никакого дополнительного программного обеспечения.

Экспорт XML

Экспорт ХМL данных имеет некоторые особенности.


- XML -стандарт не позволяет смешивать метрические и угловые величины.
 При экспорте XML, все измерения должны быть приведены к единой системе. Например, расстояния и давление должны быть все приведены в метрическую систему.
- XML не поддерживает измерение углов в MIL. При экспорте в XML, все угловые величины должны быть приведены к формату dec.deg.

- Футы и дюймы/16 не поддерживаются XML. При экспорте в XML, все величины должны быть приведены к футам.
- XML не поддерживает точки только с отметками, без координат. При экспорте, им должны быть присвоены координаты 0.0.

Доступ

-) Выберите 📝 Передача в Главном Меню.

Экспорт

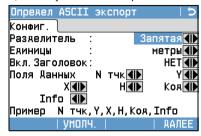
ПОИСК

для поиска проектов или форматов в памяти инструмента.

СПИСОК

Список всех преоктов и форматов, хранящихся во внутренней памяти.

Поле	Описание	
В	USB-флэшку или через порт RS232.	
Тип данных	Тип данных для передачи.	


Поле	Описание	
	USB-флэшку или через порт RS232: Измерения , Твердые точки , Изм. и тв.точки .	
	Только USB накопитель: Дорожные данные , Код , Формат , Конфигурация , Архивирование	
Проект	Здесь можно задать, нужно ли экспортировать все файлы выбранного проекта или только какой-то конкретный файл.	
Выбор пр-та	Индикация выбранного проекта или файла створов.	
Формат	Если Тип данных: Формат . Здесь можно задать, будут ли передаваться все форматы, либо только один из них.	
Имя формата	Если Формат : Формат . Имя формата для экспортирования.	

Экспорт данных: пошаговые операции

- 1. Нажмите ДАЛЕЕ в меню Экспорт после указания свойств экспорта.
- 2. Если экспорт данных должен выполняться на USB-флэшку, то нужно указать местонахождение файла, а затем нажать на **ДАЛЕЕ**.

Тип данных: Папка по умолчанию или USB накопитель

Данные проекта: Проекты Форматные файлы: Форматы Коды: Коды Выберите формат, имя файла и нажмите ДАЛЕЕ или Отсылка.
 Если речь идет о данных в формате ASCII, выводится экран Определ ASCII экспорт. Перейдите к шагу 4.. При экспорте в другие форматы, появится сообщение об успешном экспорте.

Задайте разделитель полей, единицы и т.д. и нажмите **ДАЛЕЕ**. Появится сообщение об успешном экспорте данных.

Данные измерений хранятся в хронологическом поряде - строками в приборе. Формат XML не поддерживают хронологию, но сохраняют данные в блоках. Экспорт данных в формат XML или другой форматный файл предпологает осуществление поиска данных по всей памяти прибора. Таким образом, время передачи данных в разные форматы будет сильно отличаться. Скорость передачи данных в GSI формат - самая лучшая.

В качестве разделителя не могут использоваться '+', '-', '.', буквы и цифры. Эти знаки могут быть частью идентификатора точки или частью координат - тогда файл будет экспортирован с ощибкой.

Только **Дорожные данные, Формат** и **Архивирование**, а также **ASCII** можно экспортировать на USB накопитель, но через RS232 передать их нельзя.

Все проекты, форматы, списки кодов и конфигурационные настройки будут храниться на USB-флэшке в папке архивов (backup). Данные будут сохранены как индивидуальные базы данных для каждого проекта, которые потом могут быть импортированы опять. Обратитесь к разделу "10.3 Импорт данных".

Доступные для экспорта форматы проектов

Данные проектов могут экспортироваться в форматах dxf, csv, gsi и xml, а также в любом заданном пользователем ASCII-формате. Задать пользовательский формат можно с помощью приложения Format Manager программы FlexOffice Воспользуйтесь системой интерактивной помощи FlexOffice для получения дополнительной информации о форматах файлов для экспорта.

Пример экспорта данных через порт RS232

При настройках Тип данных Измерения, набор данных может выглядеть следующим образом:

11+00000D19	21022+16641826	22022+09635023
3100+00006649	5816+00000344	8100+00003342
8200-00005736	8300+00000091	8710+00001700

GSI-идентификаторы		GSI-ид-ры: Продолж.			
11	≙	PtID	41-49	≙	Коды и атрибуты
21	≙	Гориз. направление	51	≙	ppm [mm]
22		Вертикальный угол	58		Пост.слагаемое
25		Ориентирование	81-83	≙	Y, X, H целевой точки
31	≙	Наклонное расстояние	84-86		Y, X, H станции
32	≙	Горизонтальное проложение	87	≙	Высота отраж
33	≙	Разность отметок	88		Высота инструмента

10.3

Описание

Для инструментов, где имеется Коммуникационный блок, импорт данных во внутреннюю память может выполняться с USB-флэшки.

Форматы данных для импорта

Импортируемые данные автоматически записываются в папки, предназначенные для файлов с конкретным расширением. Для импорта могут использоваться файлы следующих форматов:

Тип данных	Расширение файлов	Назначение
GSI	.gsi, .gsi (road)	Твердые точки

Импорт данных

Тип данных	Расширение файлов	Назначение
DXF	.dxf	Твердые точки
LandXML	.XML	Твердые точки
ASCII	любое расширение ASCII (.txt)	Твердые точки
Формат	.frt	Форматный файл
Список кодов	.cls	Списки кодов
Конфигурация	.cfg	Файл конфигураций
Резервное копирование	.db	Резервное копирование опорных точек, измерений и настроек

Доступ

Выберите Передача в Главном Меню.

Импорт

Поле	Описание
От	USB-флэшка
До	Инструмент
Файл	Импорт одного файла или одной архивной папки.

- При импорте архивной папки произойдет перезапись имеющихся в памяти тахеометра файла настроек и списков кодов, а также будут удалены из памяти ти все форматы и проекты.
- Резервную копию данных можно импортировать только в том случае, если структура базы данных прибора не изменилась, например, не было обновления ПО. Если ПО обновляли, может случиться так, что резеврную копию не полу-

чится импортировать. В этом случае, придется понизить версию прошивки, сохранить данные и обновить ПО заново.

Импорт данных: пошаговые операции

- 1. Нажмите **ДАЛЕЕ Импорт** для перехода к директории USB накопителя.
- 2. Выберите на USB-флэшке нужный файл или директорию для скачивания и нажмите на **ДАЛЕЕ**
- чего нажмите на **ДАЛЕЕ** для импорта. Если уже существует проект с таким же названием, появится сообщение с предложением добавить точки проекта к имеющимся или переименовать проект.

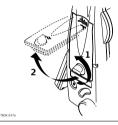
 Если точки добавляются к проекту и точки с таким идентификатором уже существуют, к ID прибавится суффикс. К примеру, PointID23 станет PointID23_1. Максимальное значение суффикса 10 (PointID23_10). При импорте архивной папки обратите внимание на системное предупрежде-

Для импорта файла задайте его имя и. если нужно, его описание и слои, после

ние и нажмите на ДАЛЕЕ для запуска процесса. Опоедел ASCII импоот Конфиг. Разделитель Запятая 🕕 Единицы метоы ◀▶ Начало Линии: Поля Данных : N TYK **I**I Y 🕕 X◀▶ Пример N T4K, Y, X, H просмот | умолч. ДАЛЕЕ

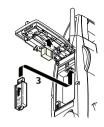
Если работаем с файлом ASCII, появится меню **Определ ASCII импорт**. Задайте разделитель полей, единицы и т.д. и нажмите **ДАЛЕЕ**.

По завершении процесса импорта файла или папки на дисплее должно появиться сообщение об этом.



В качестве разделителя не могут использоваться '+', '-', '.', буквы и цифры. Эти знаки могут быть частью идентификатора точки или частью координат - тогда файл будет экспортирован с ошибкой.

10.4


Установка USB накопителя

Использование USB-флэшки

Откройте отсек на коммуникационной панели.

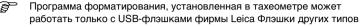
Порт USB расположен под верхней частью коммуникационного блока.

Вставьте флэшку в USB-порт.

Колпачок USB-флэшки Leica можно при этом закрепить на нижней части крышки отсека.

Закройте крышку коммуникационного блока и поверните до упора рычажок его закрытия.

Перед извлечением USB-флэшки обязательно откройте окно ГЛАВНОЕ МЕНЮ.


Хотя и можно применять различные типы USB-флэшек Leica Geosystems рекомендует промышленные флешки Leica, поскольку в противном случае компания не будет нести ответственности за потерю данных и в других случаях при использовании USB-флэшек не от компании Leica.

- Берегите USB-флэшку от влажности и сырости.
- Используйте ее только в температурном диапазоне от -40°C до +85°C.
- Старайтесь не подвергать USB-флэшку сильным механическим воздействиям.

Несоблюдение этих рекомендаций может привести к потере записанных на флэшке данных и к ее повреждению.

Форматирование USB накопителя

Перед первым применением USB-флэшки нужно ее отформатировать, эта операция также рекомендуется при удалении всех записей с нее.

надо форматировать на компьютерах.

Несмотря на автоматическую дефрагментацию. память со временем

фрагментируется. Пожалуйста, время от времени форматируйте USB накопители для поддержания работоспособности прибора.

- 1. Выберите Управл. в Главное Меню.
- 2. Выберите **USB-флеш** в **МЕНЮ РАБОТЫ С ФАЙЛАМИ Меню**.
- 3. Нажмите **↓ ФОРМАТ** В окне **Менеджер работы с USB**-:
- 4. На дисплей будет выведено системное предупреждение.
 - Запуск форматирования приведет к потере всех данных. До форматирования USB-флэшки обязательно проверьте, что все нужные данные сохранены на каком-либо другом накопителе.
- 5. Нажмите **ДА** для форматирования USB-флэшки.
- 6. По завершении форматирования на дисплей будет выведено сообщение об этом. Нажмите **ДАЛЕЕ** для перехода к меню **Менеджер работы с USB-**.

10.5

Использование Bluetooth

Описание

Если в инструменте есть Коммуникационный блок, то можно использовать средства беспроводной связи Bluetooth. Bluetooth на тахеометре работает только в ведомом режиме. Bluetooth внешнего устройства при этом будет работать в режиме "мастера" и будет контролировать подключение, а также обмен данными.

Установка подключения шаг за шагом

- 1. Удостоверьтесь, что параметры связи установлены на **Bluetooth:** и **Активно**. Обратитесь к разделу "4.6 КОММУНИКАЦИОННЫЕ ПАРАМЕТРЫ".
- 2. Включите Bluetooth на внешнем устройстве. Дальнейшие действия зависят от типа подключенного Bluetooth-устройства и его драйверов. Внимательно прочтите Руководство по эксплуатации применяемого Bluetooth-устройства для его конфигурирования и подключения. Прибор появится на компьютере как внешнее устройство "TS0x_y_zzzzzzzz", где x = серия FlexLine plus (TS02 plus, TS06 plus or TS09 plus), y = угловая точность в секундах дуги, а z = серийный номер инструмента. Например, TS02_3_1234567.
- Некоторые из таких устройств требуют знания идентификационного номера Bluetooth. По умолчанию для FlexLine plus этим номером является 0000. Изменить его можно следующим образом:

 - Выберите Связь в МЕНЮ НАСТРОЕК.
 - Нажмите PIN BIt в окне КОММУНИКАЦИОННЫЕ ПАРАМЕТРЫ.

- Укажите новый PIN для подключения Bluetooth PIN-код:.
- Нажмите **ДАЛЕЕ** для подтверждения нового PIN-кода Bluetooth.
- Когда внешнее Bluetooth-устройство в первый раз установит связь с тахеометром, на дисплее появится сообщение с названием этого устройства и запрос на разрешение связи с этим устройством.
 - Нажмите ДА, чтобы согласиться или
 - НЕТ, чтобы не согласиться с подключением
- С тахеометра на внешнее Bluetooth-устройство будет передано название инструмента и его заводской номер.
- 6. Дальнейшую работу следует вести с учетом инструкций Руководства по эксплуатации подключенного Bluetooth-устройства.

Передача данных по Bluetooth

С помощью программы FlexOffice Data Exchange Manager файлы с данными через Bluetooth-соединение будут перенесены с тахеометра в новую папку. Передача данных поддерживается и портом компьютера, сконфигурированным как Bluetooth Serial Port, но для большей скорости обмена рекомендуется использовать порт USB или RS232.

Более подробную информацию о программе FlexOffice Data Exchange Manager можно получить в системе онлайновой помощи.

При обмене данными с помощью других внешних устройств или программ следует внимательно прочитать соответствующие Руководства по эксплуатации. FlexLine plus Bluetooth сам по себе не обеспечивает управление процессом обмена данными.

10.6 Работа с Leica FlexOffice

Описание Программный пакет FlexOffice может использоваться для обмена данными между тахеометром и компьтером. В этом пакете имеется несколько утилит для подде-

ржки работы тахеометра.

Инсталляция на компьютере Инсталляционная программа имеется на CD-ROM, входящем в комплект поставки. Вставьте этот CD в компьютер, запустите программу установки и следуйте выводимым на экран указаниям. FlexOffice может устанавливаться только под OC MS

Windows 2000, XP, Vista и Windows 7.

Более подробную информацию о FlexOffice можно получить в системе онлайновой помоши.

11

Поверки и Юстировки

11.1

Общие сведения

Описание

Инструменты Leica Geosystems разрабатываются, производятся и юстируются для обеспечения наивысшего качества измерений. Однако, резкие перепады температуры, сотрясения и удары способны вызвать изменения юстировочных значений и понизить точность измерений. По этой причине настоятельно рекомендуется периодически выполнять поверки и юстировки. Их можно выполнять в полевых условиях, соблюдая описанные далее процедуры. Эти процедуры сопровождаются подробными инструкциями, которым нужно неукоснительно следовать. Некоторые инструментальные погрешности могут юстироваться механическим путем.

Электронные юстировки

Перечисленные ниже инструментальные погрешности можно поверять и юстировать с помощью электроники:

- Коллимационная ошибка.
- Место нуля и электронный уровень.
- Продольная и поперечная погрешности компенсатора.
- Погрешность положения оси вращения трубы.

Для проведения этих поверок потребуется проводить измерения при двух кругах, начать которые можно при любом круге.

Механическая юстировка

Механически можно юстировать:

- Круглый уровень инструмента и трегера.
- Лазерный отвес.
- Винты штатива

Перед выпуском тахеометра инструментальные погрешности определяются и приводятся к нулю в заводских условиях. Как уже отмечалось. значения этих погрешностей изменяются во времени, поэтому настоятельно рекомендуется заново определять их в следующих ситуациях:

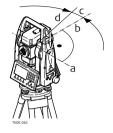
- Перед первым использованием тахеометра.
- Перед выполнением работ особо высокой точности.
- После длительной транспортировки.
- После длительных периодов работы или складирования.
- Если окружающая температура и температура, при которой проводилась последняя калибровка, различаются более чем на 10°C.

11.2

До проведения поверок инструментальных погрешностей необходимо тщательно отгоризонтировать тахеометр по электронному уровню. Первым после включения тахеометра на дисплее появляется окно Уровень и Отвес.

Трегер, штатив и место установки должны быть очень устойчивыми и не подвергаться вибрациям и другим внешним воздействиям.

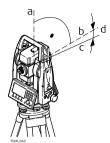
Тахеометр нужно защищать от прямых солнечных лучей во избежение его одностороннего нагрева.


Перед началом поверок необходимо дать тахеометру время на восприятие окружающей температуры. На каждый градус °C разницы между температурой хранения и текущей температурой требуется около двух минут, но на температурную адаптацию должно отводится не менее 15 минут.

11.3

Коллимационная ошибка

Юстировка линии визирования и ошибки места нуля


Коллимационная ошибка представляет собой отклонение от 90 градусов угла между осью вращения трубы и осью визирования. Влияние этой ошибки на результаты измерения горизонтальных углов возрастает с увеличением значения вертикального угла.

- а) Ось вращения трубы
- b) Перпендикуляр к оси вращения трубы
- с) Коллимационная ошибка
- d) Визирная ось

Место нуля вертикального круга

Отсчет по вертикальному кругу должен равняться точно 90° (100 град) при горизонтальном положении визирной оси. Любые отклонения от этого значения называются местом нуля. Эта погрешность постоянно влияет на результаты измерения вертикальных углов.

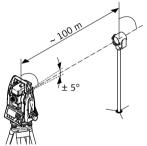
- Механическая вертикальная ось инструмента, называемая также его осью вращения
- Линия, перпендикулярная оси вращения инструмента. 90°
- Отсчет по вертикальному кругу равен 90°
- Место нуля вертикального круга

При калибровке места нуля автоматически происходит юстировка электронного уровня

Доступ

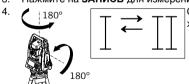
Выберите мнструм в Главное Меню.

- Опции:
 - **F1 Коллимационная ошибка** или
 - F2 Место нуля (M0).



Операции по поверке и юстировке коллимационной ошибки и места нуля, а также условия, в которых они должны проводиться. По этой причине далее они будут описаны только единожды.

Поверка и юстировка. Шаг за шагом


Отгоризонтируйте тахеометр по электронному уровню. Обратитесь к разделу "З Работа". "Горизонтирование с помощью электронного уровня".

2.

Наведите трубу на точку, находящуюся от инструмента на расстоянии порядка 100 метров и не более 5° от горизонтальной плоскости.

Нажмите на ЗАПИСЬ для измерений на выбранную точку.

Смените круг и повторите измерения на ту же точку.

Для контроля качества наведения на дисплей будут выводиться разности отсчетов по горизонтальному и вертикальному кругам.

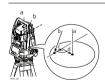
5. Нажмите на ЗАПИСЬ для измерений на выбранную точку.

Прежние и вновь полученные значения будут выведены на дисплей.

- 6. Далее:
 - Нажмите на ДОП. для выполнения еще одного приема измерений на ту же самую точку. Окончательные значения погрешностей будут вычисляться как средние по всем выполненным приемам.
 - Нажмите на ДАЛЕЕ для записи новых значений или
 - на ESC для выхода из процесса поверок без сохранения полученных результатов.

Сообщения

На дисплее могут появляться следующие важные для работы сообщения и предупреждения:


Сообщения	Описание
Для поверки выбран неподходящийверти- кальный угол!	Вертикальный угол на точку превышает 5° или при другом круге этот угол отличается от полученного при первом круге более чем на 5°. Наведите трубу на точку с точностью не хуже 5°, а при поверке наклона оси вращения трубы - на объект, вертикальный угол на который составляет порядка 27° от горизонтальной плоскости. Подтвердите получение этого соообщения.

Сообщения	Описание
Недопустимые значения! Оставлены прежние величины!	Вычисленные значения не отвечают установленным допускам. Прежние значения оставлены без изменения, а измерения нужно повторить. Подтвердите получение этого соообщения.
Для поверки выбран неподходящий гори- зонтальный угол!	Горизонтальный угол при втором круге отличается более чем на 5°. Наведите на точку с точностью не хуже 5°. Подтвердите получение этого соообщения.
Превышен предел по времени!Повторите поверку!	Интервал времени между измерениями превысил 15 минут. Повторите процесс измерений. Подтвердите получение этого соообщения.

11.4

Ошибка коменсатора

Юстировка компенсатора

- а) Механическая вертикальная ось инструмента, называемая также его осью вращения
- b) Отвесная линия
- с) Продольная составляющая погрешности компенсатора(I)
- d) Поперечная составляющая погрешности компенсатора (t)

Погешности компенсатора (I, t) появляются, когда вертикальная ось инструмента и отвесная линия параллельно, а точка равновесия компенсатора и круглого уровня не совпадают. Электронная калибровка исправляет эт тогуешность.

Продольная составляющая направлена вдоль зрительной трубы, а поперечная - поперек. Они задают оси компенсатора.

На вертикальные углы влияет продольная составляющая (I).

Поперечная составляющая соответствует погрешности горизонтирования.

Погрешность влияет на горизонтальные углы.

Доступ

I) Выберите **Ж** Инструм в Главном Меню.

2) Выберите • Юстир. в МЕНЮ ИНСТРУМЕНТОВ.

3) Выберите F3 Компенсатор

Поверка и юстировка. Шаг за шагом

Шаг	Описание
1.	Отгоризонтируйте тахеометр по электронному уровню. Обратитесь к разделу "3 Работа", "Горизонтирование с помощью электронного уровня".
2.	Нажмите ЗАПИСЬ для измерения при круге лево. Наводитсья при этом не надо.
3.	ЗАПИСЬ чтобы выполнить измерение при круге право.

Шаг	Описание
	Если погрешность больше заданных пределов, процедуру придется повторить. Все измерения первого этапа будут отброшены, осреднения со следующим не произойдет.
4.	Измерения на цель. Средние квадратические отклонения. Средние квадратические отклонения вычисляются по второму повторному ходу.

11.5

Юстировка вертикальной оси прибора

Описание

Погрешность положения оси вращения зрительной трубы связана с отклонением этой оси от перпендикуляра к оси вращения инструмента. Она влияет на точность измерения горизонтальных углов. Для определения величины этой погрешности нужно выполнить измерения на точку, которая находится под значительным углом от горизонтальной плоскости (выше или ниже этой плоскости).

До выполнения данной поверки необходимо определить величину коллимационной ошибки.

Доступ

- 1) Выберите 🧼 Инструм в Главное Меню.
- 3) Выберите F4 Наклон оси вращ.трубы

Поверка и юстировка

1. Отгоризонтируйте тахеометр по электронному уровню. Обратитесь к разделу "3 Работа", "Горизонтирование с помощью электронного уровня".

2.

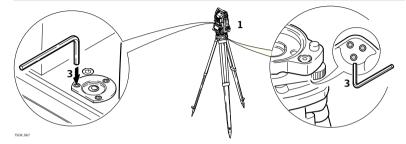
+ 27° 1-90°

Наведите на точку, расположенную на расстоянии порядка 100 м от инструмента и вертикальный угол на которую составляет минимум 27° (30 град).

3. Нажмите на ЗАПИСЬ для измерений на выбранную точку.

Для контроля качества наведения на дисплей будут выводиться разности отсчетов по горизонтальному и вертикальному кругам.

- 5. Нажмите на ЗАПИСЬ для измерений на выбранную точку.
 - Прежние и вновь полученные значения будут выведены на дисплей.
- 6. Далее:
 - Нажмите на ДОП. для выполнения еще одного приема измерений на ту же самую точку. Окончательные значения погрешностей будут вычисляться как средние по всем выполненным приемам.
 - Нажмите на ДАЛЕЕ для записи новых значений или
 - на ESC для выхода из процесса поверок без сохранения полученных результатов.


Сообщения

При проведении данной поверки могут выдаваться сообщения и предупреждения, уже описанные в разделе "11.3 Юстировка линии визирования и ошибки места нуля".

11.6

Юстировка круглого уровня тахеометра и трегера

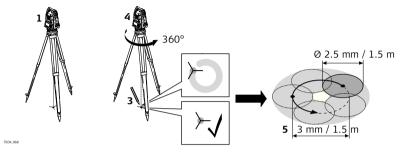
Круглого уровня

- 1. Закрепите трегер на штативе и установите на него тахеометр.
- С помощью подъемных винтов отгоризонтируйте инструмент по электронному уровню. Включите инструмент. Если компенсатор в положении Вкл., то лазерный отвес включится автоматически, а на дисплее появится окно Уровень и Отвес. В других ситуациях нажмите на кнопку FNC в этом приложении выберите Уровень.
- 3. Пузырьки круглых уровней тахеометра и трегера должны быть в нуль пункте. Если пузырек какого-либо из круглых уровней не находится в нуль пункте, то выполните следующее:
 - **Инструмент**: Если пузырек выходит за пределы круга, с помощью торцевого ключа вращайте юстировочные винты до приведения пузырька в нуль пункт.

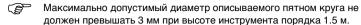
Трегер: Если пузырек выходит за пределы круга, с помощью юстировочных шпилек приведите его в нуль пункт. Вращение юстировочных винтов:

- Влево: пузырек будет перемещаться по направлению к юстировочному винту.
- Вправо: пузырек будет перемещаться по направлению от юстировочного винта.
- 4. Повторите шаг 3. с трегером до тех пор, пока уровень не будет находиться в нуль-пункте.

После завершения юстировки винты должны быть плотно затянуты.


11.7

Поверка Лазерного отвеса тахеометра



Лазерный отвес встроен в ось вращения тахеометра. При нормальных условиях эксплуатации не требуется выполнять юстировку лазерного отвеса. Если же, по каким-либо причинам у Вас возникнет необходимость его юстировки, то тахеометр следует передать в авторизованный сервисный центр Leica.

Поэтапная поверка лазерного отвеса

- Установите штатив с тахеометром на высоте порядка 1.5 м от земли и отгоризонтируйте его.
- 2. Включите инструмент. Если в его настройках задана коррекция наклона **Вкл.**, то лазерный отвес включится автоматически, а на дисплее появится окно**Уровень и Отвес**. В других ситуациях нажмите на кнопку **FNC** в этом приложении выберите **Уровень**.
 - Поверка лазерного отвеса должна проводиться с использованием хорошо освещенного и горизонтально размещенного объекта, например, листа белой бумаги.
- 3. Отметьте положение центра красного лазерного пятна.
- Медленно поверните тахеометр на 360°, следя при этом за смещениями лазерного пятна.

 Если центр лазерного пятна описывает значительную по диаметру окружность или сдвигается от его начально отмеченного положения более чем на 3 мм, то необходимо выполнить юстировку. Обратитесь для этого в ваш сервис фирмы Leica.

В зависимости от условий освещенности и типа поверхности диаметр лазерной точки может быть различным. При высоте инструмента около 1.5 м этот диаметр должен быть около 2.5 мм.

11.8

Обслуживание штатива

Уход за штативом

Контакты между металлическими и деревянными частями штатива всегда должны быть плотными.

- 1) С помощью торцевого ключа слегка затяните винты крепления ножек к головке штатива.
- 2) Затяните винты головки штатива так, чтобы при его снятии с точки ножки оставались раздвинутыми.
- 3) Плотно затяните винты ножек штатива.

12 Уход и транспортировка

12.1 Хранение

Несмотря на автоматическую дефрагментацию. память со временем фрагментируется. Пожалуйста, время от времени форматируйте внутреннюю память для поддержания работоспособности прибора.

12.2 Транспортировка

Переноска оборудования в поле

При переноске оборудования в ходе полевых работ обязательно убедитесь в том, что:

- оно переносится в своем контейнере
- или на штативе в вертикальном положении.

Перевозка в автомобиле

При перевозке в автомобиле контейнер с оборудованием должен быть надежно зафиксирован во избежание воздействия ударов и вибрации. Обязательно используйте контейнер для перевозки и надежно закрепляйте его на борту транспортного средства.

Транспортировка

При транспортировке по железной дороге, авиатранспортом, по морским путям, всегда используйте оригинальную упаковку Leica Geosystems, транспортный контейнер и коробку для защиты приборов от ударов и вибраций.

Транспортировка и перевозка аккумуляторов

При транспортировке или перевозке аккумуляторных батарей, лицо, ответственное за оборудование, должно убедиться, что при этом соблюдаются все национальные и международные требования к процессу транспортировки. Перед транспортировкой рекомендуется связаться с представителями компании, которая будет этим заниматься.

Юстировки в поле

После перевозки или транспортировки таvхеометра необходимо выполнить в поле поверки и юстировки основных параметров, описанных в данном руководстве, - до начала работ.

12.3

Хранение

Прибор

Соблюдайте температурные условия для хранения оборудования, особенно в летнее время при его хранении в автомобиле. За дополнительной информацией о температурных режимах, обратитесь к "14 Технические сведения".

Юстировки в поле

После длительного хранения перед началом работ необходимо выполнить в поле поверки и юстировки, описанные в данном Руководстве.

Li-Ion батареи

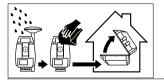
- Обратитесь к "14 Технические сведения" за подробностями о температурном режиме.
- При соблюдении этих условий аккумуляторы с уровнем заряда от 10% до 50% могут храниться в течение года. По истечении этого срока аккумуляторы следует полностью зарядить.
- Перед длительным хранением рекомендуется извлечь батарею из приемника или зарядного устройства.

- Обязательно заряжайте аккумуляторы после длительного хранения.
- Обеспечьте защиту аккумуляторов от влажности и сырости. Влажные аккумуляторы необходимо тщательно протереть перед хранением или эксплуатацией.
- Для предотвращения саморазряда батареи рекомендуемая температура хранения от -20°C до +30°C/-4°F до 86°F при низкой влажности.

12.4

Чистка и сушка

Объектив, окуляр и отражатели


- Сдуйте пыль с линз и отражателей.
- Ни в коем случае не касайтесь оптических деталей руками.
- Для протирки используйте только чистые, мягкие и неволокнистые куски ткани. При необходимости можно смачивать их водой или чистым спиртом. Ни в коем случае не применяйте какие-либо другие жидкости, поскольку они могут повредить полимерные компоненты.

Запотевание призм

Призмы/отражатели могут запотевать, если их температура ниже, чем окружающая температура. При этом может оказаться недостаточным просто протереть их. Положите их в карман на некоторое время, чтобы они восприняли окружающую температуру.

Влажность

Сушить тахеометр, его контейнер и уплотнители упаковки рекомендуется при температуре не выше 40°С с обязательной последующей протиркой. Не упаковывайте тахеометр, пока он не будет полностью просушен. При работе в поле не оставляйте контейнер открытым.

Кабели и штекеры

Содержите кабели и штекеры в сухом и чистом состоянии. Проверяйте отстуствие пыли и грязи на штекерах соединительных кабелей.

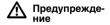
13 Руководство по безопасности

13.1 Общие сведения

Описание

Нижеследующие рекомендации адресованы κ лицу, ответственному за эксплуатацию инструментов.

Ответственное за прибор лицо обязано обеспечить строгое соблюдение правил эксплуатации прибора всеми лицами.


13.2 Допустимое применение

Допустимое применение

- Измерение горизонтальных и вертикальных углов.
 - Измерение расстояний.
 - Запись результатов.
 - Визуализация направления визирования и положения оси вращения тахеометра.
 - Обмен данными с внешними устройствами.
 - Вычислительные операции с помощью программного обеспечения.

Запрещенные действия

- Работа с приемником без проведения инструктажа исполнителей по технике безопасности.
- Работа вне установленных для прибора пределов допустимого применения.
- Отключение систем обеспечения безопасности.
- Снятие шильдиков с информацией о возможной опасности.
- Вскрытие корпуса прибора, нецелевое использование сопутствующих инструментов (отвертки).
- Модификация конструкции или переделка прибора.
- Использование незаконно приобретенного инструмента.
- Использование оборудования, имеющего явные повреждения.
- Использование вспомогательных аксессуаров других производителей, не одобренных Leica Geosystems.
- Умышленное наведение прибора на людей.
- Проведение мониторинга машин и других движущихся объектов без должного обеспечения безопасности на месте работ.
- Визирование на солнце.
- Неадекватное обеспечение безопасности на месте проведения работ (например, при измерениях на строительных площадках, дорогах и т.п.).

Запрещенные действия способны привести к травмам и материальному ущербу. В обязанности лица, отвечающего за тахеометр, входит информирование пользователей о возможных рисках и мерах по их недопущению. Приступать к работе разрешается только после прохождения пользователем надлежащего инструктажа по технике безопасности.

13.3

Ограничения в использовании

Окружающие условия

Приемник предназначен для использования в условиях, пригодных для постоянного пребывания человека; он непригоден для работы в агрессивных или взрывоопасных средах.

Опасно

Перед началом работ в опасных условиях, требуется разрешения местных ответственных органов.

13.4

Ответственность

Производителя

Leica Geosystems AG, CH-9435 Heerbrugg, далее именуемая Leica Geosystems, является отвественной за продукт, в том числе руководство пользователя и аксессуары.

Производителя аксессуаров, не Leica Geosystems

Прочие производители (не Leica Geosystems) берут на себя ответственность за разработку, внедрение и безопасность производимых ими продуктов, также они несут ответственность за безопасность и эффективность совместной работы своих продуктов с продуктами Leica Geosystems.

Ответственного за приемник лица

Отвечающее за данный прибор лицо обязано:

- Изучить инструкции по безопасности работы с инструментом и инструкции, содержащиеся в "Руководстве по эксплуатации".
- Изучить местные нормы техники безопасности, имеющие отношение к предотвращению несчастных случаев.
- Информировать Leica Geosystems немедленно, как только эксплуатация продукта перестанет быть безопасной.
- Удостовериться в соблюдении местного законодательства о работе радиопередатчиков.

Предупреждение

Лицо, ответственное за тахеометр, должно обеспечить использование прибора в соответствии с инструкциями. Это лицо также отвечает за подготовку и инструктаж персонала, который пользуется инструментом, и за безопасность работы оборудования во время его эксплуатации.

13.5

Риски эксплуатации

Предупреждение

Отсутствие или неверное толкование инструкции может привести к несчастным случаям с человеческими, финансовыми, материальными потерями, а также нанести вред окружающей среде.

Меры предосторожности:

Все пользователи должны следовать инструкциям по технике безопасности, составленными изготовителем оборудования, выполнять указания лиц, ответственных за его использование.

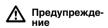
Осторожно

Постоянно следите за качеством получаемых результатов измерений, особенно в тех случаях, если тахеометр подвергся сильным механическим воздействиям или

ремонту, либо был использован нештатным образом или применяется после длительного хранения или транспортировки.

Меры предосторожности:

Необходимо периодически проводить контрольные измерения, поверки и юстировки, описанные в данном Руководстве, особенно после возникновения нештатных ситуаций, а также перед выполнением особо важных работ и по их завершении.



Во избежание короткого замыкания, не рекомендуется использование вех и их насадок рядом с силовыми кабелями и железными дорогами.

Меры предосторожности:

Держитесь на безопасном расстоянии от энергосетей. Если работать в таких условиях все же необходимо, обратитесь к лицам, ответственным за безопасность работ в таких местах, и строго выполняйте их указания.

Если приемник используется с применением различных вех, реек и т.п., возрастает риск поражения молнией.

Меры предосторожности:

Старайтесь не работать во время грозы.

Осторожно

Избегайте наведения зрительной трубы на солнце, поскольку она работает как увеличительная линза и может повредить ваши глаза или тахеометр.

Меры предосторожности:

Не наводите зрительную трубу на солнце.

Предупреждение

Во время проведения съемок или разбивочных работ возникает опасность несчастных случаев, если не уделять должного внимания окружающим условиям (препятствия, земляные работы или транспорт).

Меры предосторожности:

Лицо, ответственное за приемник, обязано предупредить пользователей о всех возможных рисках.

Предупреждение

Недостаточное обеспечение мер безопасности на месте проведения работ может привести к опасным ситуациям, например, в условиях интенсивного движения транспорта, на строительных площадках или в промышленных зонах.

Меры предосторожности:

Всегда добивайтесь того, чтобы место проведения работ было безопасным для их выполнения. Придерживайтесь региональных норм техники безопасности, направленных на снижение травматизма и обеспечения безопасности дорожного движения.

Предупреждение

Если компьютеры, предназначенные для работы только в помещении, используются в полевых условиях, то есть опасность получить удар током.

Меры предосторожности:

По поводу полевого использования компьютеров вместе с продукцией Leica Geosystems, обратитесь к инструкции производителя.

Осторожно

Во избежание несчастных случаев, запрещается использовать инструменты с аксессуарами, не совместимыми с продуктом.

Меры предосторожности:

При работе в поле следите за тем, чтобы все компоненты оборудования были должным образом установлены и надежно закреплены в штатное положение. Старайтесь избегать сильных механических воздействий на оборудование.

Осторожно

Во время транспортировки или хранения заряженных батарей при неблагоприятных условиях может возникнуть риск возгорания.

Меры предосторожности:

Прежде, чем транспортировать или складировать оборудование, полностью разрядите аккумуляторы, оставив приемник во включенном состоянии на длительное время.

При транспортировке или перевозке аккумуляторов лицо, ответственное за оборудование, должно убедиться, что при этом соблюдаются все национальные и международные требования к таким действиям. Перед транспортировкой оборудования обязательно свяжитесь с представителями компании-перевозчика.

Предупреждение

Кроме того, удар молнии способен привести к возгоранию или взрыву.

Меры предосторожности:

Для зарядки батарей рекомендуется использовать только зарядные устройства Leica Geosystems.

Предупрежде-

Механические повреждения, высокие температуры, погружение в жидкости могут привести к порче и даже самопроизвольному взрыву батарей.

Меры предосторожности:

Оберегайте аккумуляторы от ударов и высоких температур. Не роняйте и не погружайте их в жидкости.

Предупреждение

При соприкосновении контактов батарей с металлическими предметами, может случиться короткое замыкание, поэтому не рекомендуется транспортировка батарей, например, в кармане одежды.

Меры предосторожности:

Следите за тем, чтобы полюса аккумуляторов не закорачивались из-за контакта с металлическими объектами.

Предупреждение

При неправильном обращении с оборудованием возможны следующие опасности:

- Возгорание полимерных компонентов может приводить к выделению ядовитых газов, опасных для здоровья.
- Механические повреждения или сильный нагрев аккумуляторов способны привести к их взрыву и вызвать отравления, ожоги и загрязнение окружающей среды.
- Несоблюдение техники безопасности при эксплуатации оборудования может привести к нежелательным последствиям для Вас и третьих лиц.
- Неправильное обращение с силиконовым маслом может вызвать загрязнение окружающей среды.

Меры предосторожности:

Отработанные аккумуляторы не следует выбрасывать вместе с бытовыми отходами.

Используйте оборудование в соответствии с нормами, действующими в Вашей стране.

Не допускайте неавторизованный персонал к оборудованию.

Специфические рекомендации по уходу и эксплуатации оборудования можно узнать на сайте Leica Geosystems http://www.leica-geosystems.com/treatment или у дилера Leica Geosystems.

Предупреждение

Ремонт приборов может осуществляться только в авторизованных сервисных центрах Leica Geosystems.

13.6 13.6.1

Категория лазера Общие сведения

Общие сведения

Приведенные далее сведения (в соответствии с современными нормами - международным стандартом IEC 60825-1 (2007-03) и IEC TR 60825-14 (2004-02) обеспечивают лицу, ответственному за инструмент, необходимую информацию для проведения обучения и инструктажа исполнителя, который будет работать с инструментом, по возможным рискам эксплуатации и их предупреждению.

Ответственное за прибор лицо должно обеспечить, чтобы все пользователи тахеометра понимали эти указания и строго следовали им.

Изделия, классифицированные как лазерные устройства класса 1, класса 2 и класса 3R не требуют:

- привлечения эксперта по лазерной безопасности,
- применения защитной одежды и очков,
- установки предупреждающих знаков в зоне выполнения измерений,

если оборудование эксплуатируется согласно приведенным в данном документе требованиям, поскольку уровень опасности для глаз очень низок.

Изделия, классифицированные как лазерные устройства класса 2 или класса 3R, могут вызывать кратковременное ослепление и остаточное изображение на сетчатке, особенно при низком уровне окружающей освещенности.

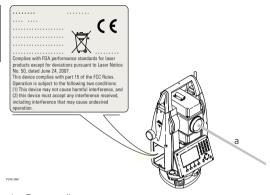
13.6.2

Общие сведения

Дальномер, измерения на отражатели

Дальномерный модуль (EDM), встроенный в тахеометр, использует лазерный луч видимого диапазона, который выходит из объектива зрительной трубы.

Описанный в данном разделе лазерный прибор относится к классу 1 в соответствии со стандартом:


- IEC 60825-1 (2007-03): "Безопасность лазерных приборов".
- EN 60825-1 (2007-10): "Безопасность лазерных приборов".

Лазеры класса 1 являются безопасными при соблюдении разумных условий их эксплуатации и не представляют угрозы для глаз, если используются и обслуживаются в соответствии с инструкциями данного Руководства.

Описание	3 Значение	3 Значение
Максимальная мощность излучения	0.33 мВт	0.33 мВт
Длительность импульса	400 пикосекунд	800 пикосекунд
Частота повторения импульсов	320 MHz	100 МГц - 150 МГц
Длина волны	650 - 690 нанометров	650 - 690 нанометров

Маркировка

Лазер класс 1 согласно IEC 60825-1 (2007 - 03)

а) Лазерный луч

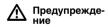
13.6.3

Дальномер, безотражательные измерения

Общие сведения

Дальномерный модуль (EDM), встроенный в тахеометр, использует лазерный луч видимого диапазона, который выходит из объектива зрительной трубы.

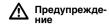
Описанный в данном разделе лазерный прибор относится к Классу 3R в соответствии со стандартом:


- IEC 60825-1 (2007-03): "Safety of Laser Products"
- EN 60825-1 (2007-10): "Safety of Laser Products"

Лазерные устройства класса Class 3R:

Прямое попадание лазерного луча в глаза может быть вредным (с невысоким травматическим риском для глаз), особенно если попадание луча в глаза является умышленным. Риск получения травмы от луча лазерных приборов класса ЗR ограничен благодаря тому, что:

- а) случайное попадание луча в глаза очень редко может происходить в наихудшей ситуации, например, при прямом попадании в зрачок,
- b) конструктивно предусмотрен предел безопасности максимально допустимого воздействия лазерного излучения (MPE),
- срабатывает естественный рефлекс на яркий свет лазерного луча видимого диапазона.

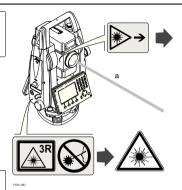

Описание	3 начение	3 начение
	(R30/R500/R1000)	(R30/R500/R1000)
Максимальная мощность излучения	4.75 мВт	5.00 мВт
Длительность импульса	400 пикосекунд	800 пикосекунд
Частота повторения импульсов	320 МГц	100 МГц - 150 МГц
Длина волны	650 - 690 нанометров	650 - 690 нанометров
Расходимость пучка	0.2 x 0.3 милли радиан	0.2 x 0.3 милли радиан
NOHD (Номинальное расстояние риска для глаз) при 0.25 сек	67 м/ 220 фута	80 м/ 262 фута

С точки зрения безопасности лазерные устройства класса ЗR должны рассматриваться как потенциально опасные.

Меры предосторожности:

Избегайте прямого попадания луча в глаза. Не направляйте лазерный пучок на других людей.

Потенциальные риски связаны не только с самими лазерным лучами, но и с пучками, отраженными от таких объектов как отражатели, окна, зеркала, металлические предметы и т.п.


Меры предосторожности:

Избегайте наведения тахеометра на сильно отражающие и зеркальные поверхности, способные создавать мощный отраженный пучок.

Старайтесь не смотреть в направлении лазерного луча вблизи отражателей или сильно отражающих поверхностей, когда дальномер включен в режиме лазерного визира или выполняются измерения. Наведение на отражатель нужно выполнять только с помощью зрительной трубы.

Маркировка

Апертура лазера

Излучение лазера Избегайте прямого попадания в глаза

Лазер класса 3R согласно IEC 60825-1, (2007 - 03)

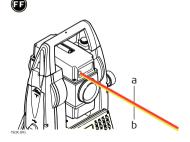
 $Po \le 5.00 \text{ mW}$

 $\lambda = 650-690 \text{ nm}$

а) Лазерный луч

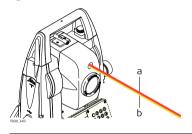
13.6.4

Лазерный указатель створа EGL


Общие сведения

Встроенная система электронного наведения использует невидимый лазерный луч светодиода (LED), выходящий из объектива зрительной трубы. В зависимости от типа зрительной трубы EGL может быть сконструирован по-разному.

Описанное в данном разделе устройство не входит в сферу действия стандарта IEC 60825-1 (2007-03): "Безопасность лазерного оборудования". Это устройство относится к свободной от ограничений группе согласно документу IEC 62471 (2006-07) и не связано с рисками эксплуатации при условии, что оно используется и обслуживается согласно приведенным в данном документе указаниям.


Иллюстрации

- а) Красный луч
- b) Желтый луч

Иллюстрации

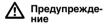
- а) Красный луч
- b) Желтый луч

13.6.5

Лазерный отвес

Общие сведения

Встроенный лазерный отвес использует красный видимый луч, выходящий из нижней части тахеометра.

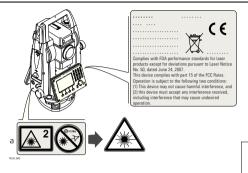

Описанный в данном разделе лазерный прибор относится к классу 2 в соответствии со стандартом

- IEC 60825-1 (2007-03): "Безопасность лазерных приборов".
- EN 60825-1 (2007-10): "Безопасность лазерных приборов".

Лазеры 2 класса:

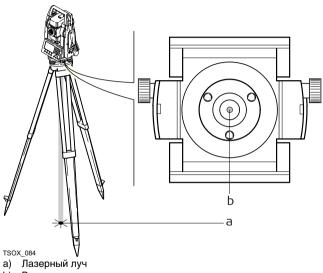
Приборы этого класса не представляют опасности при кратковременном попадании их луча в глаза, но связаны с риском получения глазной травмы при умышленном наведении луча в глаза.

Описание	Значение
Максимальная мощность излучения	0.95 мВт
Длительность импульса	C.W.
Частота повторения импульсов	C.W.
Длина волны	635 нм



С точки зрения эксплуатационных рисков лазерные приборы класса 2 не представляют собой опасности для глаз.

Меры предосторожности:


Старайтесь не смотреть на лазерный пучок и не наводите его на других людей.

Маркировка

Излучение лазера Не смотрите на лазерный луч Класс 2 согласно IEC 60825-1 (2007 - 03) Po ≤ 1.00 mW λ = 620 - 690 nm

 Будет при необходимости заменена на предупреждение о наличии лазера класса 3R.

- Выход лазерного луча

13.7

Электромагнитная совместимость ЕМС

Описание

Термин электромагнитная совместимость означает способность электронных устройств штатно функционировать в такой среде, где присутствуют электромагнитное излучение и электростатическое влияние, не вызывая при этом электромагнитных помех в другом оборудовании.

Предупрежде-

Электромагнитное излучение может вызвать сбои в работе другого оборудования.

Хотя тахеометры Leica Geosystems отвечают требованиям строгих норм и стандартов, которые действуют в этой области, не может полностью исключить возможность того, что в другом оборудовании могут возникать помехи.

Осторожно

Присутствует риск некорректной работы при использовании дополнительных устройств (полевых и персональных компьютеров, оборудования третьих производителей).

Меры предосторожности:

При использовании их в работе с приемником они должны отвечать строгим требованиям, оговоренным действующими инструкциями и стандартами. При использовании их в работе с приемником они должны отвечать строгим требованиям, оговоренным действующими инструкциями и стандартами. При использовании компьютеров и раций обратите внимание на информацию об электромагнитной совместимости, которую должен предоставить их изготовитель.

Осторожно

Помехи, создаваемые электромагнитным излучением, могут приводить к превышению допустимых пределов ошибок измерений.

Хотя приборы соответствуют всем нормам безопасности, Leica Geosystems не исключает возможности неполадок в работе оборудования, вызванных электромагнитным излучением (например, рядом с радиопередатчикамии, дизельными генераторами и т.д.).

Меры предосторожности:

Контролируйте качество получаемых результатов, полученных в подобных условиях.

Предупреждение

Если приемник работает с присоединенными к нему кабелями, второй конец которых свободен (например, кабели внешнего питания или связи), то допустимый уровень электромагнитного излучения может быть превышен, а штатное функционирование другой аппаратуры может быть нарушено.

Меры предосторожности:

Во время работы с приемником соединительные кабели, например, с внешним аккумулятором или компьютером, должны быть подключены с обоих концов.

Bluetooth

Использование Bluetooth-подключений:

Предупрежде

Электромагнитное излучение может создавать помехи в работе других устройств, а также медицинского и промышленного оборудования, например, стимуляторов сердечной деятельности, слуховых аппаратов и т.п. Оно также может иметь вредное воздействие на людей и животных.

Меры предосторожности:

Хотя тахеометры Leica Geosystems отвечают строгим требованиям норм и стандартов, при работе в сочетании с рекомендованными рациями или цифровыми сотовыми телефонами Leica Geosystems не может полностью исключить возможность того, что не возникнут помехи в работе другого оборудования или не будет вредного воздействия на людей или животных.

- Избегайте выполнения работ с применением раций или цифровых сотовых телефонов вблизи АЗС и химических установок, а также на участках, где имеется взрывоопасность.
- Избегайте выполнения работ с применением раций или цифровых сотовых телефонов в непосредственной близости от медицинского оборудования.
- Не используйте оборудование с рациями или цифровыми сотовыми телефонами на борту самолетов.

13.8

Федеральная комиссия по связи FCC

Нижеследующий параграф относится только и приборам, задействующим радиосвязь.

Данное оборудование было протестировано и признано полностью удовлетворяющим требованиям для цифровых устройств власса В, в соответствии с разделом 15 Норм FCC.

Эти требования были разработаны для того, чтобы опеспечить разумную защиту против помех в жилых зонах.

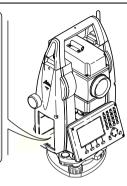
Данное оборудование генерирует, использует и может излучать энергию в радиодиапазоне, если установлено и используется без соблюдения приведенных в этом документе правил эксплуатации, что спсобно вызывать помехи в радиоканалах. Тем не менее, нет гарантий того, что такие помехи не будут возникать в конкрет-

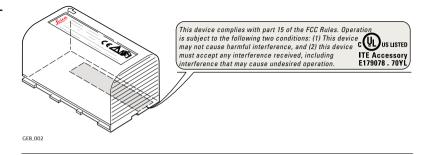
ной ситуации даже при соблюдении инструктивных требований.

Если данное оборудование создает помехи в радио- или телевизионном диапазоне, что может быть проверено включением и выключением инструмента, пользователь может попробовать снизить помехи одним из указанных ниже способов:

- Поменять ориентировку или место установки приемной антенны.
- Увеличить расстояние между оборудованием и приемником.
- Подсоединить оборудование к другой линии электросети по сравнению с той, к которой подключен приемник радио или ТВ-сигнала.
- Обратиться к дилеру или опытному технику-консультанту по радиотелевизионному оборудованию.

Изменения, не согласованные с Leica Geosystems могут привести к отстранению от работы с прибором.


Маркировка FlexLine plus


Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

TSOX_085

Маркировка батареи GEB211, GEB221

14

Технические сведения

Угловые измерения

14.1Точность

Пределы точности угловых измерений	CKO Hz, V, ISO 17123-3	Разрец	Разрешение дисплея			
["]	[мград]	["]	[°]	[мград]	[тыс]	
1	0.3	0.1	0.0001	0.1	0.01	
2	0.6	0.1	0.0001	0.1	0.01	
3	1.0	0.1	0.0001	0.1	0.01	
5	1.5	0.1	0.0001	0.1	0.01	
7	2	0.1	0.0001	0.1	0.01	

Характеристики

Измерения абсолютные, непрерывные - при двух кругах Обновление каждые 0.1 - 0.3 сек.

14.2

Диапазон

Дальномерные измерения на отражатели

Отражатель	В условиях А		В условиях В		В условиях С	
	[M]	[фут]	[M]	[фут]	[M]	[фут]
Стандартная призма GPR1	1800	6000	3000	10000	3500	12000
Тройной отр. (GPR1)						
3	2300	7500	3000	10000	3500	12000
f	2300	7500	4500	14700	5400	17700
360° prism (GRZ4, GRZ122)	800	2600	1500	5000	2000	7000
Отражающая полоска 60 x 60 мм	150	500	250	800	250	800
Минипризма GMP101	800	2600	1200	4000	2000	7000
Мини-призма 360° GRZ101	450	1500	800	2600	1000	3300

Минимальные расстояния:

1.5 M

Атмосферные условия

В услови-Плотная дымка, видимость до 5 км; либо сильная освещенность и ях А:

значительные колебания воздуха

В услови-Легкая дымка, видимость порядка 20 км; средняя освещенность,

ях В: слабые колебания воздуха В услови- Пасмурная погода, отсутствие дымки, видимость до 40 км; отсутствие

ях С: колебаний воздуха

Точность

Параметры точности указаны для измерений на стандартную призму.

Режим работы EDM	CKO Hz, V, ISO 17	Обычное время измерения [сек]		
	③	①	①	①
Станд.отражатель	1.5 мм + 2 ррт	1 мм + 1.5 ppm	2.4	2.4
Режим Fast	3 мм + 2 ppm	3 мм + 1.5 ррт	2.0	2.0
Режим трекинга	3 мм + 2 ppm	3 мм + 1.5 ррт	0.33	< 0.15
Отр. полоска	5 мм + 2 ррт	5 мм + 1.5 ppm	2.4	2.4

Препятствия на пути распространения луча, сильные колебания воздуха и движущиеся объекты могут ухудшить указанные выше параметры точности.

Характеристики

Принцип: Фазовые измерения

Тип: Коаксиальный, красный лазер видимого диапазона

Длина волны несущей:

Измерительная систе-

ма:

658 нм

Системный анализатор на основе 100 МГЦ - 150 МГЦ

14.3

Безотражательные измерения

Диапазон

Power Pinpoint R500 (без отражателя)

Полутоновый эталон	В услов	условиях D В усл		В условиях Е		В условиях F	
Kodak	[M]	[фут]	[м]	[фут]	[M]	[фут]	
Белая сторона, отр.способность 90 %	250	820	400	1312	>400	>1640	
Серая сторона, отр.способность 18 %	100	330	150	490	>250	>820	

Ultra Pinpoint R1000 (без отражателя)

Полутоновый эталон	В услов	3 условиях D		В условиях Е		В условиях F	
Kodak	[M]	[фут]	[M]	[фут]	[M]	[фут]	
Белая сторона, отр.способность 90 %	600	1970	800	2630	>1000	>3280	
Серая сторона, отр.способность 18 %	300	990	400	1310	>500	>1640	

D:

Диапазон измерений: от 1.5 м до 1200 м Дальность FlexPoint от 1.5 м до 30 м Вывод на дисплей: До 1200 м

Атмосферные условия

В условиях Ярко освещенные объекты, сильные колебания воздуха

В условиях Затененный объект

E:

В условиях Днем, ночью и в сумерки F:

Точность

Допустимо для 👍 и 🕼

Стандартные измерения		Обычное время измерений [сек]	Максимальное время измерений [сек]
0 м - 500 м	2 мм + 2 ppm	3 - 6	15
более 500 м	4 мм + 2 ppm	3 - 6	15

Препятствия на пути распространения луча, сильные колебания воздуха и движущиеся объекты могут ухудшить указанные выше параметры точности.

Режим слежения*	Станд. отклонение	Обычное время измерений [сек]
Трекинг	5 мм + 3 ррт	0.25
		1.00

Время измерений и их точность зависят от погодных условий, типа наблюдаемого объекта и общей ситуации при выполнении измерений.

Характеристики

Тип: Коаксиальный, красный лазер видимого диапазона

Длина волны несущей: 658 нм

Измерительная систе-

ма:

(F)

Системный анализатор на основе 100 MHz - 150 MHz

Фазовй дальномер с частотой 320 МГЦ

Размеры лазерного пятна

Расстояние [м]	Примерные размеры лазерного пятна [мм]
30	7 x 10
50	8 x 20

14.4

дальномерные измерения на отражатель (>4.0 км)

(B)

Эти характеристики актуальны для 🝙 исключительно.

Диапазон

R500, R1000	В условиях А		В условиях В		В условиях С	
	[M]	[фут]	[м]	[фут]	[м]	[фут]
Стандартная призма GPR1	2200	7300	7500	24600	>10000	>33000
Отражающая полоска 60 мм х 60 мм	600	2000	1000	3300	1300	4200

Диапазон измерений: От 1000 м до 12 км

Вывод на дисплей: До 12 км

Атмосферные условия

В условиях Плотная дымка, видимость до 5 км; либо сильная освещенность и значительные колебания воздуха A: В условиях Легкая дымка, видимость порядка 20 км; средняя освещенность. B: слабые колебания воздуха В условиях Пасмурная погода, отсутствие дымки, видимость до 40 км; отсутс-

C: твие колебаний воздуха

Точность

Стандартные измерения		Обычное время измерений [сек]	Максимальное время измерений [сек]
Призма (>4.0 km)	5 мм + 2 ppm	2.5	12

Препятствия на пути распространения луча, сильные колебания воздуха и движущиеся объекты могут ухудшить указанные выше параметры точности.

Характеристики

Принцип: Фазовые измерения

Тип: Коаксиальный, красный лазер видимого диапазона

Длина волны несущей: 658 нм

Измерительная система: Системный анализатор на основе 100 МГц - 150 МГц

14.5 14.5.1

Соответствие национальным стандартам Продукты без коммуникационной панели

Соответствие национальным нормам

Leica Geosystems AG гарантирует, что отвечает всем основным условиям и требованиям Директив ЕС. Полный текст по этому поводу имеется на http://www.leica-geosystems.com/ce.

14.5.2

Продукты с Коммуникационной панелью

Соответствие национальным нормам

- FCC Part 15 (применимы в США)
- Leica Geosystems AG гарантирует, что инструменты, на которых имеется Коммуникационный блок, отвечают основным условиям и требованиям Директивы 1999/5/EC. Полный текст по этому поводу имеется на http://www.leica-geosystems.com/ce.

Оборудование класса 1, согласно Директиве 1999/5/EC (R&TTE) может выпускаться на рынок и использоваться без каких-либо ограничений во всех странах ЕС.

 Соответствие национальным нормам, которые не входят в FCC part 15 или Директиву 1999/5/EC, должно проверяться и согласовываться до начала использования оборудования.

Частотный диапазон

2402 - 2480 МГц

выдаваемое напряжение

Bluetooth: 2.5 MBT

Антенна

Тип: Mono pole Vсиление: +2 dBi

14.6

Общие технические характеристики прибора

Зрительная труба

Увеличение:

30 крат 40 мм

Полная апертура объектива:

40 MM

Пределы фокусировки:

от 1.7 м до бесконечности

Поле зрения:

1°30'/1.66 град

2.7 м на 100 м

Компенсация

Четырехосевая компенсация (2-осевой компенсатор наклонов и вводом поправок за коллимационную ошибку и место нуля).

Угловая точность	Точность фиксации		Диапазон ком	пенсации
["]	["]	[мград]	[']	[град]
1	0.5	0.2	±4	0.07
2	0.5	0.2	±4	0.07
3	1	0.3	±4	0.07
5	1.5	0.5	±4	0.07
7	2	0.7	±4	0.07

Уровень

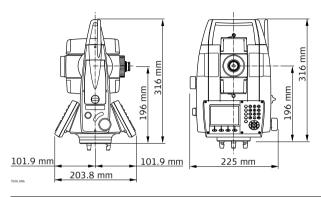
Чувствительность круглого уров- 6'/2 мм ня:

Разрешение электронного уровня:

Средства управления

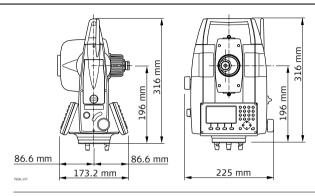
Ч/Б дисплей: 288 x 160 пикселей, LCD, с подсветкой, 8 строк по 31 символу каждая, подогрев (при темп. $<-5^\circ$).

Ц/С дисплей: 320 x 240 пикселей (QVGA), LCD, с подсветкой, 9 строк по 31 символу каждая, подсветка клавиатуры


Порты тахеометра

Название	Описание
RS232	5-контактный LEMO-0 для подачи питания, связи и передачи данных. Этот порт расположен в нижней части тахеометра.
Хост-порт USB*	Гнездо для флэш-карты USB
USB-порт устройства*	Кабельное подключение к mini USB-портам внешних устройств для связи и обмена данными.
Bluetooth*	Подключение Bluetooth для связи и обмена данными.

^{*} Только для инструментов оснащенных Коммуникационным блоком.


Габариты тахеометра

Габариты тахеометра

Bec

Тахеометр: 4.2 - 4.5 кг (в зависимости от выбранной конфигурации)

 Трегер:
 760 г

 Аккумулятор GEB211:
 110 г

 Аккумулятор GEB221:
 210 г

Высота оси вращения трубы

 Без трегера:
 196 мм

 С трегером (GDF111):
 240 ±5 мм

Запись

Модель	Тип памяти	Емкость [Мб]	Количество измерений
TS02 plus	Встроенная память	2	13,500
TS06 plus / TS09 plus	Встроенная память	10	60,000

Лазерный отвес

Тип: Красный лазер видимого диапазона, класс 2

Расположение: На оси вращения тахеометра Точность: Отклонение от отвесной линии:

1.5 мм (2 сигма) при высоте инструмента 1.5 м

Диаметр лазерного пятна: 2.5 мм при высоте инструмента 1.5 м

Питание

Напряжение внешнего источ-

ника питания:

(через серийный RS232

интерфейс)

Номинально 12.8 В пост. тока, диапазон 11.5 -

14 вольт

Аккумулятор GEB211 Тип: Li-lon Напряжение: 7.4 В

 Емкость:
 2.2 Ампер-часов

 Время работы*:
 около 10 часов

* Рассчитано для измерений, выполняемых каждые 30 секунд при температуре 25°C. Реальное время работы батарейки без подзарядки может быть меньше для не новых аккумуляторов.

Аккумулятор GEB221

 Тип:
 Li-lon

 Напряжение:
 7.4 В

 Емкость:
 4.4 Ампер-часов

 Время работы*:
 около 20 часов

* Рассчитано для измерений, выполняемых каждые 30 секунд при температуре 25°C. Реальное время работы батарейки без подзарядки может быть меньше для не новых аккумуляторов.

Окружающая среда

Температура

Тип	Эксплуатация температура		Температура хранения	
	[°C]	[°F]	[°C]	[°F]
Тахеометр	от -20 до +50	от -4 до +122	от -40 до +70	от -40 до +158
Аккумулятор	от -20 до +50	от -4 до +122	от -40 до +70	от -40 до +158
USB-флэшка	от -40 до +85	от -40 до +185	от -50 до +95	от -58 до +203

Защита от влаги, пыли и песка

Температурный пиапа. От -35° по ±50°С

Тип	Уровень защиты
Тахеометр	IP55 (IEC 60529)

Влажность

Тип	Уровень защиты
Тахеометр	Максимум 95% без конденсации Влияние конденсации влаги успешно устраняется периодической протиркой и просушкой инструмента.

Северный вариант

1 Civil Cpa i ypribivi Aviana	G1 65 45 156 G
30H:	
	Для ускорения вывода на дисплей при низких темпера-
	турах включите его подогрев и используйте внешний
	источник питания. Учитывайте при этом, что некоторое
	время потребуется на прогрев дисплея.

Лазерный маячок EGL

Рабочий диапазон:	от 5 м до 150 м (15 фт до 500 фт)
Точность позиционирова-	от 5 см до 100 м (1.97" на 330 фт)
ниа.	

Автоматические поправки

Система автоматически корректирует измерения поправками за влияние следующих факторов:

- Коллимационная ошибка
- Погрешность положения оси вращения трубы
- Кривизна Земли
- Наклон оси вращения инструмента

- Место нуля вертикального круга
- Рефракция
- Погрешность индекса компенсатора
- Эксцентриситет

14.7

Пропорциональная поправка

Учет пропорциональной поправки

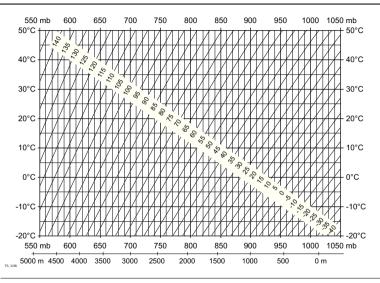
При учете пропорциональной поправки все расстояния будут корректироваться в зависимости от их величины.

- Поправка за атмосферу.
- Редукция на средний уровень моря.
- Поправка за проекцию на плоскость.

Атмосферные поправки

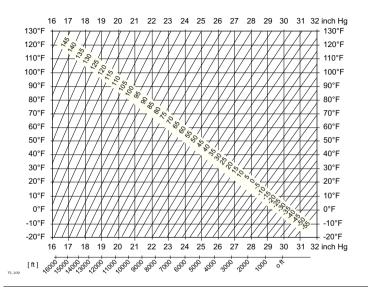
Представленное на дисплее наклонное расстояние может считаться надежным, если в него введены поправки ppm (мм /км), рассчитанные с учетом преобладающих во время выполнения измерений атмосферных условий.

В состав поправок за атмосферу входят:


- Поправки за атмосферное давление
- Поправки за температуру воздуха

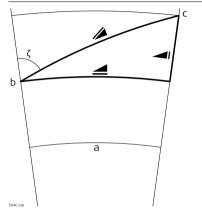
Для достижения максимальной точности дальномерных измерений атмосферные поправки следует определять так:

- Точность 1 ppm
- Температура должна определяться с точностью не хуже 1°C
- Давление до 3 милли бар


Атмосферная поправка °C

Атмосферная ppm-поправка при температуре [°С], атмосферном давлении [в миллибарах] и высоте [в метрах] при 60~% относительной влажности.

Атмосферная поправка °F


Атмосферная ppm-поправка при температуре [в градусах Фаренгейта], атмосферном давлении [в дюймах ртутного столба] и высоте [в футах] при 60 % относительной влажности.

14.8

Формулы приведения

Формулы

Средний уровень моря

b Инструмент

Отражатель

Наклонное расстояние

Горизонтальное проложение

Разность отметок

Система вычисляет наклонные расстояния, горизонтальные проложения и превышения по следующим формулам: Кривизна Земли (1/R) и средний коэффициент рефракции (k = 0.13) автоматически учитываются при вычислении горизонтальных проложений и превышений. Вычисленные горизонтальные проложения относятся к высоте станции, но не к высоте отражателя.

а

Наклонное расстояние

$$\blacksquare$$
 = D₀ · (1 + ppm · 10⁻⁶) + mm

Выведенное на дисплей наклонное расстояние [м]

D0 Нескорректированное расстояние [м] ррт Пропорциональная поправка за атмосферу [мм/км]

мм Постоянное слагаемое [мм]

Горизонтальное проложение

$$= Y - A \cdot X \cdot Y$$

Горизонтальное проложение [м]

ζ = Ωτομοτ πο πο

 ζ = Отсчет по вертикальному кругу

R = 6.378 * 106 м (радиус Земли)

а (1 - k/2)/R = 1.47 * 10-7 [м-1] k = 0.13 (средний коэффициент рефракции)

Разность отметок

$$= X + B \cdot Y^2$$

■ Разность отметок [м]

/ 🚄 * sinζ

X 🚄 * cosζ

ζ = Отсчет по вертикальному кругу

b (1 - k)/2R = 6.83 * 10-8 [M-1]

k=0.13 (средний коэффициент рефракции) R=6.378*106 м (радиус Земли)

15

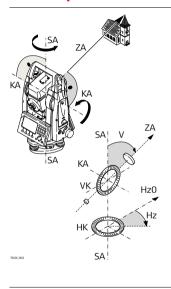
Международные ограничения

Ограниченная международная гарантия

Данный продукт является объектом международного гарантийного обязательства International Limited Warranty, полный текст которого можно скачать со страницы Leica Geosystems http://www.leica-geosystems.com/internationalwarranty или получить у представителя Leica Geosystems. Указанная гарантия является исключительной и заменяет собой все другие гарантии, требования или условия, явные или косвенные, установленные фактически, юридически или иным образом, включая гарантии, требования или условия годности для продажи, пригодности для той или иной цели, удовлетворительности качества и патентной чистоты, все из которых теряют свою силу.

Лицензионное соглашение

В приборы уже установлено внутреннее программное обеспечение или оно может поставляться на носителе, также его можно загрузить с сайта Leica Geosystems после регистрации. Это программное обеспечение защищено авторскими правами и другими законами и его использование определяется и регулируется соответствующим Лицензионным соглашением, которое содержит, но не ограничивает, следующие аспекты: Границы Лицензии, Гарантия, Права на Интеллектуальную собственность, Ограничение ответственности, Случаи, исключающие гарантию, Руководящий закон и Полномочия. Пожалуйста, убедитесь, что в любое время сможете соблюсти условия данного Лицензионного соглашения.


Это соглашение относится ко всем продуктам Leica Geosystems и может быть загружено с http://www.leica-geosystems.com/swlicense или получено от регионального представителя Leica Geosystems.

Вы не должны устанавливать и использовать программное обеспечение, кроме случаев и условий, описанных в данном Лицензионном соглашении. Установка или использование программного обеспечения в других случаях, подразумевает соблюдение условий Лицензионного соглашения. Если Вы не согласны совсем или с отдельными частями Лицензионного соглашения, Вы не должны устанавливать или использовать программное обеспечение и должны вернуть его вместе с документацией и квитанцией продавцу, у которого приобретён продукт, в течение 10 дней после покупки для возмещения его полной стоимости.

16

Глоссарий

Ось инструмента

ZA = Ось визирования / коллимационная ось

Оптическая ось трубы = линия проходящая через центр сетки нитей и центр объектива.

SA = **Ось вращения инструмента** Вертикальная ось тахеометра.

КА = Ось вращения трубы Горизонтальная ось вращения зрительной трубы. Эту ось также называют осью Цапфа.

= Вертикальный угол / зенитное расстояние

VK = Вертикальный круг

Этот круг разбит на кодовые деления для отсчетов вертикальных направлений.

Hz = Горизонтальное направление

НК = Горизонтальный круг

Этот круг разбит на кодовые деления для отсчетов горизонтальных направлений.

Отвесная линия / компенсатор

Направление действия силы тяжести. Компенсатор приводит ось вращения тахеометра в отвесное положение.

Наклон вертикальной оси

Угол между отвесной линией и направлением оси вращения тахеометра.

Этот наклон не является инструментальной ошибкой и не устраняется измерениями при обоих кругах. Возможное его влияние на измерение горизонтальных и вертикальных углов исключается работой 2-осевого компенсатора.

Зенит

Точка отвесной линии над местом установки тахеометра.

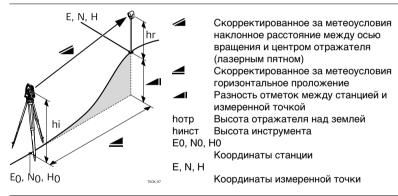
Сетка нитей

Эта стеклянная пластина с нанесенной на ней сеткой нитей и устанвленная в зрительной трубе.

Коллимационная ошибка

Коллимационная ошибка представляет собой отклонение от 90 градусов угла между осью вращения трубы и осью визирования. Эта погрешность устраняется измерением при обоих кругах.

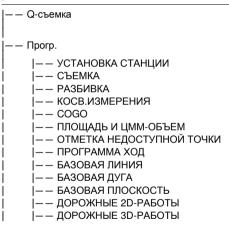
Место нуля вертикального круга

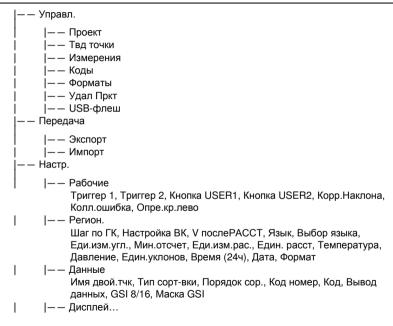

Отсчет по вертикальному кругу должен равняться точно 90°(100 град) при горизонтальном положении визирной оси. Любое отклонение от этого значения называется местом нуля (i).

Погрешность положения оси вращения трубы

Ошибка за наклон оси вращения трубы выражается в расхождениях между результатами измерений, полученными при одном и другом круге.

Объяснение обозначений



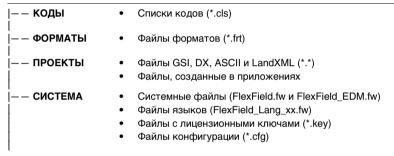

Приложение АСтруктура меню

В зависимости от версии системного ПО состав разделов меню может быть различным.

Структура меню

Подс.дисплея, Подсв.клавиш**, Подсв.сетки, Контраст*, Подог. дисп*, Актвн. Диспл**, Авт.отключ., Экр.заставка, Звук, Сигнал, СектБип. Разбивка Сигнал I-- EDM Режим ЕДМ. Тип отраж.. Пост.слаг.. Абс.конст.. Лазер. визир. Маячок FGI I—— Интерфейс Порт: . Bluetooth:. Скор. обм:. Биты данн:. Четность:. Кон метка:. Стопбиты: 1. Подтвержд: F1 Коллимационная ошибка, F2 Место нуля (M0), F3 Компенсатор, F4 Наклон оси враш.трубы. F1 Просм. данных поверок. F5 Сроки провед. поверок Тип прибора, Завод.номер, Номер инстр, Тип RL, Темп.инстр, Аккумулятор, Встр. ПО, Версия сборки, Активный язык, ПО дальномера, Опер.система, Проект, Станции, Тв.пункты, Измерения, Объем занятой памяти, Конец фирм.ТО, Следующ. ТО |—— ЛицКлюч Использ. PIN-код. Новый PIN-код I—— Загр. ПО

F1 Системное ПО, F2 Только языковые файлы


- * Доступно только для черно-белого дисплея
- ** Доступно только для цветного сенсорного дисплея

Приложение ВСтруктура папок

Описание

На USB-флэшке файлы хранятся в определенных директориях. Приведенная ниже схема представляет используемую по умолчанию структуру директорий.

Структура директорий

Алфавитный указатель

3	Рекомендации по получению надежных
Bluetooth	результатов52
PIN 82	Типы отражателей75
Антенна	Electronic Guide Light (Лазерный маячок) EGL
выдаваемое напряжение334	Инструкция по технике безопасности 315
Иконка30	F
Коммуникационные параметры83	FCC
Передача данных275	FlexOffice
Подключение274	Описание
техника безопасности321	
)	G
Del. ЗАП228	GSI
200. 0/11	Кодирование243
	Маска вывода данных, настройка 68
EDM	Формат вывода, настройки68
на отражатель(>4.0 км)332	Н
Electronic Distance Measurement -	H-Trans
азерный дальномер	
Лазерный визир77	
Настройки73	Li-lon батарея
Отраженный сигнал79	Хранение
Постоянное слагаемое отражателя77	

P	Аккумулятор	
P<->NP	Замена	48
PIN228	Зарядка	47
Bluetooth PIN274	Иконка	31
PIN инструмента255	Первое время использования	46
РРМ, настройки79	Технические характеристики GEB211	340
_	Технические характеристики GEB221	340
Q	Активировать сенсорный экран	229
Q-Code246	Активировать-выключить сенсорный дисплей	,
R	activate/deactivate	229
RS232	Атмосферные данные, настройка	78
Иконка	Б	
Коммуникационные параметры 83	Базовая дуга, приложение	135
IJ	Базовая линия, приложение	
_	Базовая плоскость, приложение	
USB Иконка30	Без отражателя/Тумблер призмы	
	Безотражательные измерения	
Структура директорий	Биты данн	
форматирование	Блокирование тахеометра	
• • •	Блокировка PIN-кодом	
V	Быстрые коды	
V после РАССТ61	•	
Δ	В	
•	Величина уклона	
Автоматическое выключение, настройка	Вертикальаня ось, юстировка	286
TETOMATH TOTAL COMPOSITION, MACHINA		

Вертикальная ось	Данные	
Вертикальный угол	Передача	261
Настройка60		
Описание	Двойная точка, настройки	66
Вертикальынй створ180	Дисплей	26
Bec	Дисплей, технические характеристики	336
Время 65	Дисплейные клавиши	31
Встроенное ПО FlexField15	Длина рейки	237
Вывод данных, выбор67	Допустимое применение	299
Выемки, уклоны 189, 204	Дороги 2D, программа	173
Выключить сенсорный экран229	Дороги 3D, программа	178
Г	Дорожный проект, элементы	180
Габариты, инструмента	E	
Главное меню49	Единицы атмосферного давления, выбор	64
Глоссарий	Единицы изм. расст	229
Горизонтальный створ180	Единицы измерений, настройка	62
Горизонтальный угол, настройки59	Единицы измерения температуры, выбор	64
Графические символы37	Единицы измерения углов	229
Д	Единицы измерения углов, настройка	62
д Дальномер	Единицы уклона, выбор	65
дальномер безотражательный режим	3	
дальномер EDM	Загрузить лицензионный ключ	254
отражательный режим	• •	
отражатольный рожны	Загрузить языки	

Загрузка ПО257	Порты	336
Задание сдвигов227	Установка по уровню	43
Запись кода, настройка 67	Инструменты	
Засечка	Загрузить ПО	257
Засечка локальная97	Информация	
Засечка по Гельмерту96	Лицензионные ключи	254
Засечка, локальная	Уравнивание	248
Засечка, по Гельмерту96	Информация о приборе	251
Засечки, приложения COGO166	Использование PUK кода	256
Звуковые сигналы, настройки71	K	
Зенит 60, 352		
Зенитное расстояние351	Калибровка	040
Значение отражения сигнала EDM229	Напоминание о поверках и юстировках	
Зрительная труба	Ошибки, просмотр текущих	
И	Калибровка сенсорного экрана	
	Категория лазера	
Идентификация, настройка113	КЛ/КП, настройки	
Измерения на отражатель54	Клавиатура	23
Импорт данных267	Клавиша Триггер	
Индивидуальные значения РРМ, настройки 79	Настройки	
Инструмент	Описание	26
Габариты336, 337	Клавиши	24
Защита с PIN-кодом255	Ключи лциензий, ввод	254
Компоненты18	Кнопка USER, настройки	56
Конфигурация 56	Кодирование	243
Настройки56	GSI	243

Редактирование/Расширение	
Свободное кодирование	
Коллимационная ось	7
Коменсатор Лазерный отвес	
	34 ⁻
Ошибка коменсатора	43
	316
Коммуникационна панель Регулировка яркости	4
Технические характеристики334 Технические характеристики	339
Коммуникационные параметры81 Лазерный Отвес	
Коммуникационный блок Поверка	29 ⁻
Описание 22 Лазерный указатель	
Частотный диапазон	228
Компенсатор, иконка	
Компенсация, выбор	63
Конец строки	
Контраст, настройки71 Юстировка	279
Координатная геометрия - COGO,	
приложение	8. 324. 32
Коррекция горизонтальных углов, настройки 37	
Коррекция наклонов, настройки	
Можиморовин о огранизация	
Круглый уровень, поверка290 Менеджер файлов USBМенеджер файлов USB	
Место нуля	
Описание	350

Юстировка279	Отвесная линия	352
Механическая юстировка277	Ответственность	301
Минимальный отсчет, выбор63	Отражатель	
н	Абсолютная константаПостоянные слагаемые Leica	
Навигационная клавиша25	Тип	
Настройка проекта 89	Отражение сигнала от EDM	
Настройки, данные	_	
Настройки, дисплей69	П	
Настройки, звук	Память	
Настройки, конфигурация56	Хранение	
Настройки, рабочие конфигурации56	Параметры связи	
Настройки, региональные59	Передача высоты	229
Насыпь, уклоны	Пиктограммы	
Недоступная отметка, приложение 161	Площадь и объем по ЦММ, приложение	153
Недоступная точка162	Поверка задней точки	. 229, 229
0	Поверки и ЮстировкиПодключение Bluetooth	
Область действия данного руководства 4	Подключение виетосттПодогрев дисплея, настройка	
Объем по ЦММ, приложение153	Подсветка дисплея, настройка	
Ограничения в использовании301	Подсветка клавиатуры, настройки	
Окно Уровень/Отвес, доступ227	Подсветка сетки нитей, настройка	
Опорная линия 116	Поиск	
Ориентирование по углу96	Поиск с неизвестным	
Ось визирования	Поиск с неизвестным	
Ось вращения трубы, описание	Пользовательский интерфейс	

Поправки	Предварительные настройки для	
Автоматические	приложений	88
за атмосферу	Установка допусков	9
Поправки за наклон осей инструмента58	Установка станции	
Порты	Применение ppm	80
Коммуникационные параметры82	Принцип работы	
Порты тахеометра	Проверка задней точки	
Порядок запуска, автоматический запуск 249	Проверка привязки	, 23
Последовательный порт, разъем85	Программы	
Пост. слагаемое, отражатели77	Дорога 2D	17
Прибор	Дороги 3D	178
Технические хараткеристики	Ход	. 20
Призма	Программы- Начало работ	
Иконки	Установка допусков	210
Приложения	Продление линии, приложение COGO	17
Базовая дуга135	Проекты, управление	
Базовая линия116	Пропорциональные поправки	. 34
Базовая плоскость146	Прямая и обратная задачи, COGO	16
Координатная геометрия - COGO163	P	
Недоступная отметка161	•	4
Площадь и объем по ЦММ153	Работа, с прибором	
Съемка 108	Разделы, описание	
Установка станции95	Расширение файла	
Приложения - Приступая к работе	Расширение файлов	
Настройка проекта89	Редактирование полей, использование	
	Режим слежения EDM Вкл/Выкл	. 22

Результаты измерений260	Стоп-биты	84
Руководство по безопасности	Структура меню	55
С	Структура папок	
Свободное кодирование244	Овемка, приложение	UC
Сдвиг цели	Т	
Сдвиги, приложения COGO 170	Твердые точки	60
Северная модификация341	Температура	
Секторный бип, настройки72	USB-флэшка 3-	40
Сетка нитей353	Аккумулятор 3-	40
Сигнал при разбивке, настройка72, 113	Инструмент	40
Ск.обмена 83	Температура хранения	40
Скрытая точка	Температура эксплуатации	40
Скрытая точка, фукнция229	Термины 3	51
Слежение, EDM240	Технические сведения	26
Содержимое контейнера16	Техобслуживание, истечение срока 2	54
Созание списка кодов243	Типы уклонов	01
Составляющие инструмента18	Точки	
Список кодов, создание243	Несколько точек с одинаковым именем	66
Статистика памяти	Точность	
здесь	безотражательные измерения 33	30
Створоуказатель EGL	На отражатель (>4.0 км)	33
Настройки маячка EGL77	отражательные измерения 33	28
Створы	Угловые измерения	26
Описание	Транспортировка	95
Создание и загрузка189		

у	Функции FNC
Угловые измерения	Описание22
Удаление проектов из памяти261	X
Удалить последнюю запись	Ход
Управл	Без известной ЗТ21
Управление данными	
Управление форматами	По известному азимуту
Уровень	Программа
Установка	с известной ЗТ
Штатив40	Хранение
Установка допусков210	Ц
Установка прибора 40	Циллиндрический сдвиг23
Установка станции90	ч
Установка станции, приложение95	•
Установка тахеометра40	Четность
Уход	Четырехосевая компенсация
Φ	Число знаков после запятой, выбор
*	Чистка и сушка
Форматирование	Ш
USB накопитель	Шаг по ГК5
Форматирование встроенной памяти	Штатив
Форматы данных	Обслуживание
Формулы приведения	Установка 4
Функции	
FNC/клавиша "Избранное"24	
Доступ227	Экранная заставка, настройка 7

Экспорт данных	261	Я
Электромагнитная совместимость ЕМС	320	Язык
Электронные поверки и юстироуки		Bı
Электронный дальномер		3a
Слежение	240	На
Электронный уровень, горизонтирование	43	На
Эоементы кривой, рписание	188	
Ю		
Юстировка		
Вертикальная ось	286	
Комбинированная юстировка	279	
Круглого уровня тахеометра	290	
Круглого уровня треггера	290	
Линия визирования	279	
Место нуля	279	
Механическая	277	
Поверка Лазерного отвеса	291	
Подготовка	278	
Электронная	. 282, 285	
Юстировка компенсатора	284	
Юстировки		
Коменсатор	284	
Электронные	277	

ык	
Выбор	33
Загрузка языка	25
Настройка выбора	62
Настройки	62

Тотальный контроль качества (TQM): это наше обязательство перед клиентами.

Leica Geosystems AG, Хеербругг, Швейцария, была сертифицирована, как компания, кторая отвечает стандартам качества ISO 9001 и ISO 14001.

По поводу контроля качества, обращайтесь к местным дилерам Leica Geosystems.

Leica Geosystems AG

Heinrich-Wild-Strasse CH-9435 Heerbrugg Switzerland Phone +41 71 727 31 31

- when it has to be **right**

766178-3.0.0ru Перевод исходного текста (766166-3.0.0en) Напечатано в Швейцарии