

# ПАСПОРТ

# РЕЗАКИ ИНЖЕКТОРНЫЕ ДЛЯ РУЧНОЙ КИСЛОРОДНОЙ РЕЗКИ ТИПА Р2А, Р3П

# СОДЕРЖАНИЕ

| 1. ДЕКЛАРАЦИЯ СООТВЕТСТВИЯ                   | 3  |
|----------------------------------------------|----|
| 2. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ                 | 4  |
| 3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ                | 5  |
| 4. КОМПЛЕКТ ПОСТАВКИ                         | 6  |
| 5. ОБЩИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ                 | 6  |
| 6. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ               | 7  |
| 7. ПОДГОТОВКА К РАБОТЕ И ЭКСПЛУАТАЦИЯ РЕЗАКА | 8  |
| 8. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА                 | g  |
| 9. КОНТАКТНАЯ ИНФОРМАЦИЯ                     | 10 |

## 1. ДЕКЛАРАЦИЯ СООТВЕТСТВИЯ

Благодарим вас за то, что вы выбрали оборудование торговой марки «СВАРОГ», созданное в соответствии с принципами безопасности и надежности. Высококачественные материалы и современные технологии, используемые при производстве нашей продукции, гарантируют надежность и простоту в техническом обслуживании.

Оборудование соответствует техническим регламентам таможенного союза, имеет декларацию соответствия EAC.

Информация, содержащаяся в данной публикации является верной на момент поступления в печать. Компания в интересах развития оставляет за собой право изменять спецификации и комплектацию, также вносить изменения в конструкцию оборудования в любой момент времени без предупреждения и без возникновения каких-либо обязательств.

Производитель не несет ответственности за травмы, ущерб, упущенную выгоду или иные убытки, полученные в результате неправильной эксплуатации оборудования или самостоятельного изменения конструкции оборудования, а также возможные последствия незнания или некорректного выполнения предупреждений, изложенных в паспорте.

#### 2. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

При эксплуатации резака необходимо соблюдать:

- Межотраслевые правила по охране труда при производстве ацетилена, кислорода, процессе напыления и газопламенной обработке металлов (ПОТ РМ-19-2001), утв. Постановлением Министерства труда и социального развития РФ от 14.02.2001г. № 11;
- Межотраслевые правила по охране труда при электро и газосварочных работах (ПОТ РМ-020-2000), утв. Постановлением Министерства труда и социального развития РФ от 9.10.2001г. №72;
- Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 03-576-03), утвержденных Постановлением Госгортехнадзора России от 11.06.2003г. №91.

К работе по сварке допускаются лица не моложе 18 лет, прошедшие медицинское освидетельствование, соответствующее обучение, инструктаж, проверку знаний требований техники безопасности и имеющие практические навыки по обслуживанию данного оборудования.

Во избежание ожогов, рабочие должны иметь спецодежду согласно «Типовым отраслевым нормам бесплатной выдачи спецодежды, спецобуви и средств индивидуальной защиты работников машиностроительных и металлообрабатывающих производств», утв. Министерством труда и социального развития РФ от 16.12.97.

Для защиты органов слуха сварщику следует применять средства индивидуальной защиты по ГОСТ Р 12.4.051.

Для защиты зрения от воздействия ультрафиолетовых и инфракрасных лучей пламени рабочие должны иметь защитные очки закрытого типа по ГОСТ Р 2.4.013 со светофильтрами по ОСТ 21-6-87.

Работать при отсутствии средств пожаротушения на рабочих местах запрещается.

При эксплуатации резака применение дефектных и составных рукавов запрещается.

Работы с открытым пламенем должны осуществляться на расстоянии не менее:

- 10 метров от переносных генераторов ацетилена и групп баллонов;
- 3,0 метра от газопроводов.

# 3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1 - Основные параметры резаков в зависимости от установленных мундштуков

| Мундштук наружный                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                                       | Nº1                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 | Nº2                                                                                                                                                                                                                                                                                                                                        |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Мундштук внутренний                                                                                     |                                                                                                                                                                                          |                                                                                                                                                                                                                       | <b>№</b> 2                                                                                                                                                                                                                                                      | <b>№</b> 3                                                                                                                                                                                                                                                                                                               | <b>№</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>№</b> 5                                                                                                                                                                                                                                                                                                                                                      | <b>№</b> 6                                                                                                                                                                                                                                                                                                                                 |  |
| Толщина разрезаемой стали, мм                                                                           |                                                                                                                                                                                          | До 15                                                                                                                                                                                                                 | 15-30                                                                                                                                                                                                                                                           | 30-50                                                                                                                                                                                                                                                                                                                    | 50-<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100-<br>200                                                                                                                                                                                                                                                                                                                                                     | 200-<br>300                                                                                                                                                                                                                                                                                                                                |  |
| кислорода                                                                                               |                                                                                                                                                                                          | 3,5                                                                                                                                                                                                                   | 4,0                                                                                                                                                                                                                                                             | 4,2                                                                                                                                                                                                                                                                                                                      | 5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,5                                                                                                                                                                                                                                                                                                                                                             | 10,0                                                                                                                                                                                                                                                                                                                                       |  |
| Давление на входе, кгс/см² ацети                                                                        |                                                                                                                                                                                          | 0,03-1,2                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                          | 0,1-<br>0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                            |  |
| пропан-бутана                                                                                           |                                                                                                                                                                                          | 0,01-1,5                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,2-1,5                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                            |  |
| Кисло-                                                                                                  | ацети-<br>лене                                                                                                                                                                           | 3,20                                                                                                                                                                                                                  | 4,70                                                                                                                                                                                                                                                            | 7,60                                                                                                                                                                                                                                                                                                                     | 12,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21,75                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                          |  |
| рода<br>при<br>работе<br>на                                                                             | пропа-<br>не,<br>при-<br>род.<br>газе                                                                                                                                                    | 4,10                                                                                                                                                                                                                  | 5,80                                                                                                                                                                                                                                                            | 8,60                                                                                                                                                                                                                                                                                                                     | 13,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23,00                                                                                                                                                                                                                                                                                                                                                           | 33,20                                                                                                                                                                                                                                                                                                                                      |  |
| ацетилена                                                                                               |                                                                                                                                                                                          | 0,50                                                                                                                                                                                                                  | 0,65                                                                                                                                                                                                                                                            | 0,75                                                                                                                                                                                                                                                                                                                     | 0,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,25                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                          |  |
| пропан                                                                                                  | -бутана                                                                                                                                                                                  | 0,41                                                                                                                                                                                                                  | 0,49                                                                                                                                                                                                                                                            | 0,49                                                                                                                                                                                                                                                                                                                     | 0,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,68                                                                                                                                                                                                                                                                                                                                                            | 0,86                                                                                                                                                                                                                                                                                                                                       |  |
| Масса резака, кг, не более<br>РЗП<br>РЗП-МУ                                                             |                                                                                                                                                                                          |                                                                                                                                                                                                                       | 0,75<br>1,0                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |  |
| Габаритные размеры, мм<br>РЗП-М<br>РЗП-МУ                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                       | 485×50×140<br>768×50×110                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |  |
| Присоединительные размеры штуцеров: - для кислорода - для горючего газа. Условный проход присоединяемо- |                                                                                                                                                                                          |                                                                                                                                                                                                                       | М16×1.5<br>М16×1,5LH<br>9 мм                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                         | аемой ста<br>кисло<br>ацети<br>пропан<br>Кисло-<br>рода<br>при<br>работе<br>на<br>ацети<br>пропан<br>с-му<br>размеры,<br>I-м<br>размеры,<br>I-м<br>с-му<br>размеры,<br>г-му<br>пьные раз | внутренний  аемой стали, мм  кислорода  ацетилена  пропан-бутана  пропа- при не, при- работе при- на пропан-бутана  пропан-бутана  к, кг, не более ВП -МУ размеры, мм I-М -МУ пьные размеры еров: слорода очего газа. | Внутренний №1  аемой стали, мм До 15  кислорода 3,5  ацетилена  пропан-бутана  Кислорода пропание, работе при род. газе  ацетилена 0,50  пропан-бутана 0,41  к, к, не более ВП -Му размеры, мм І-М -Му пьные размеры еров: слорода рчего газа. ц присоединяемо- | внутренний №1 №2  внутренний №1 №2  аемой стали, мм До 15 15-30  кислорода 3,5 4,0  ацетилена 0,03  пропан-бутана 0,01  Кисло-рода пропапри не, работе прина род. газе  ацетилена 0,50 0,65  пропан-бутана 0,41 0,49  к, к, не более ВП -МУ  размеры, мм  І-М  лене размеры еров:  слорода очего газа.  ц присоединяемо- | Внутренний №1 №2 №3  аемой стали, мм До 15 15-30 30-50  кислорода 3,5 4,0 4,2  ацетилена 0,03-1,2  пропан-бутана 0,01-1,5  Кислорода пропане прине не, работе прина род. газе ацетилена 0,50 0,65 0,75  пропан-бутана 0,41 0,49 0,49  к, к, не более ВП О, мм 1-М 2 1,4 мм 1-М 2,4 мм 1-М 2, | ВНУТРЕННИЙ №1 №2 №3 №4  аемой стали, мм До 15 15-30 30-50 50- 100  КИСЛОРОДА 3,5 4,0 4,2 5,0  ацетилена 0,03-1,2  пропан-бутана 0,01-1,5  КИСЛОРОДА пропанне, прина не, прина род. газе  ацетилена 0,50 0,65 0,75 0,90  пропан-бутана 0,41 0,49 0,49 0,62  к, кг, не более ВП -МУ  размеры, мм 1-М 7-МУ  пъные размеры еров: слорода очего газа. присоединяемо- | внутренний №1 №2 №3 №4 №5 аемой стали, мм До 15 15-30 30-50 50- 100- 200 кислорода 3,5 4,0 4,2 5,0 7,5 ацетилена 0,03-1,2 0,1- 0,2 пропан-бутана 0,01-1,5 0,2- 12,4 21,75  Кислорода пропапри не, прина род. газе прина род. газе припан-бутана 0,41 0,49 0,49 0,62 0,68  к, к, не более ВП -МУ пъные размеры еров: слорода присоединяемо- |  |

#### 4. КОМПЛЕКТ ПОСТАВКИ

|                                  |                                                |                     | Тип исполнения      |                    |         |         |         |    |
|----------------------------------|------------------------------------------------|---------------------|---------------------|--------------------|---------|---------|---------|----|
| Наименование                     |                                                | РЗП-01М<br>РЗП-01МУ | РЗП-02М<br>РЗП-02МУ | РЗП-ОЗМ<br>РЗПОЗМУ | P2A-01M | P2A-02M | P2A-03M |    |
| Резак в сборе с ниппелем         |                                                | 1                   | 1                   | 1                  | 1       | 1       | 1       |    |
|                                  | Мундштук внутренний (мундштук на- наружный №2) | №1                  | 1*                  | 1                  | 1*      | 1*      | 1       | 1* |
| ий                               |                                                | <b>№</b> 2          | 1                   | 1*                 | -       | 1       | 1*      | -  |
| енн                              |                                                | <b>№</b> 3          | 1                   | 1                  | -       | 1       | 1       | 1  |
| тутр                             |                                                | <b>№</b> 4          | 1                   | 1                  | 1       | 1       | 1       | 1  |
|                                  | ra-<br>2)                                      | <b>№</b> 5          | -                   | 1                  | 1       | -       | -       | 1  |
| Мундштук (мундштук (мундштук на- | <b>№</b> 6                                     | -                   | -                   | 1                  | -       | -       | -       |    |
| Мундштук №1<br>наружный №2       |                                                | №1                  | 1+1*                | 1*                 | 1*      | 1+1*    | 1*      | 1* |
|                                  |                                                | <b>№</b> 2          | -                   | -                  | 1       | -       | -       | 1  |

### 5. ОБЩИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ

Резаки инжекторные (именуемые в дальнейшем - резаки) предназначены для ручной газокислородной резки (раскроя) листового и сортового металла из низкоуглеродистых сталей толщиной до 300 мм.

Основные параметры резаков соответствуют требованиям к резакам типа Р2 и Р3 по ГОСТ5191-79.

#### Исполнения резаков:

- Р2А-М для работы на ацетилене (в качестве горючего газа применяется ацетилен в смеси с кислородом чистотой не ниже 99,5% по ГОСТ5191-79);
- РЗП-М для работы на пропан-бутане или природном газе (в качестве горючего газа применяется пропан-бутан или природный газ в смеси с кислородом).

• РЗП-МУ – резак увеличенной длины по сравнению с базовым исполнением.

Климатическое исполнение резаков — УХЛ1 и Т1 по  $\Gamma$ 0СТ15150-69, но для работы в диапазоне температур:

- для P2A от минус 40° до плюс 40°;
- для РЗП от минус 20° до плюс 40°.

# 6. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

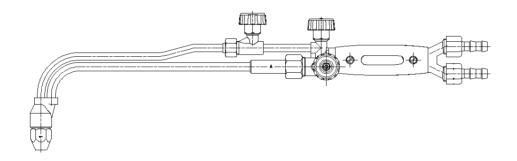



Рис. 1- общий вид резака

Резак состоит из ствола и наконечника, соединенных между собой.

Ствол состоит из корпуса с регулировочными вентилями горючего газа, подогревающего кислорода, режущего кислорода, трубок с штуцерами и рукоятки. Ниппели для горючего газа и кислорода присоединяются к штуцерам с помощью гаек. Штуцер горючего газа имеет левую резьбу.

Наконечник резака состоит из головки, трубок режущего кислорода и горючей смеси, смесительной камеры и инжектора.

Наконечник крепится к стволу с помощью накидных гаек.

Кислород через ниппель подается в корпус ствола к вентилям подогревающего кислорода и режущего кислорода. При открытии вентиля подогревающего кислорода кислород проходит через инжектор, создавая разряжение в смесительной камере, способствующее засасыванию горючего газа и смешиванию его с кислородом. Горючая смесь

поступает в головку резака и выходя через щелевые отверстия между наружным и внутренним мундштуками при воспламенении образует подогревающее пламя. Подача кислорода для резки осуществляется через вентиль режущего кислорода, трубку наконечника и центральный канал внутреннего мундштука.

Работа резака основана на нагреве подогревающим пламенем металла до температуры плавления с последующим сжиганием его в струе режущего кислорода. Плавное регулирование мощности пламени и состава горючей смеси на каждом номере мундштука производится вентилями, ступенчатое — сменой мундштука (см. табл. 1).

## 7. ПОДГОТОВКА К РАБОТЕ И ЭКСПЛУАТАЦИЯ РЕЗАКА

Перед началом работы убедитесь в исправности оборудования и проверьте:

- а) герметичность присоединения рукавов, всех разъемных и паяных соединений;
- b) наличие разряжения (подсоса) в канале горючего газа.

Установите рабочее давление газов в соответствии с таб.1 редукторами на баллонах.

Откройте на 1/4 оборота вентиль подогревающего кислорода и на 1/2 горючего газа, зажгите горючую смесь. Отрегулируйте вентилями резака "нормальное" пламя.

Пуск режущего кислорода осуществить открытием вентиля режущего кислорода на 1/2 и более оборота.

Выключение подачи газов производить в обратном порядке: горючий газ, кислород.

При возникновении обратного удара немедленно закрыть вентили горючего газа, затем кислорода на резаке, прочистить инжекторное устройство, проверить герметичность соединений резака проверить рукава, а при необходимости заменить.

Содержите резак в чистоте, периодически очищайте наконечник от нагара и брызг металла с помощью наждачного полотна или мелкого напильника.



ВНИМАНИЕ! В соответствии с правилами по охране труда ПОТ Р М 019-2001 между баллонными редукторами и аппаратурой (резаками, горелками) следует устанавливать предохранительные устройства, в том числе пламегасящие. Производитель рекомендует устанавливать клапаны обратные КО-3 и затворы предохранительные ЗП-3.



ВНИМАНИЕ! При возникновении обратного удара (горение горючей смеси внутри резака) немедленно закрыть вентиль горючего газа, затем вентили режущего и подогревающего кислорода, охладить резак, удостовериться в отсутствии повреждений резака, внутреннего и наружного мундштуков, обратных клапанов и пламягасящих предохранительных устройств, газовых рукавов. Перед дальнейшей эксплуатацией необходимо прочистить инжекторное устройство.

### 8. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

На данную продукцию устанавливается гарантия 12 месяцев со дня продажи.

По вопросам, связанным с гарантийным обслуживанием, обращайтесь к фирме продавцу. В течение срока гарантии покупатель оборудования имеет право бесплатно устранить дефекты оборудования или обменять его на новое при условии, что дефект возник по вине производителя.

Обязательно наличие оригинала гарантийного талона с печатями поставщика и фирмы-продавца. Копии талонов не дают права на гарантийный ремонт.

Техническое освидетельствование оборудования на предмет установления гарантийного случая осуществляет производитель. Если неисправность возникла по вине покупателя, гарантия аннулируется.

## 9. КОНТАКТНАЯ ИНФОРМАЦИЯ

Поставщик: 000 «Эрма» 197343, Санкт-Петербург, ул. Студенческая, 10, офис С7А; тел (812) 325-01-05, факс (812) 325-01-04, www.svarog-rf.ru, info@svarog-spb.ru

# Гарантийный талон №\_\_\_\_\_

| Печать поставщика   | Модель оборудования: | Печать фирмы-<br>продавца |
|---------------------|----------------------|---------------------------|
| ограниченной ответ  | Серийный номер:      |                           |
| "Эрма"              | Фирма-продавец:      |                           |
| GARAT- Flores 618 * | Дата продажи:        |                           |

Заполняется представителем фирмы-продавца